Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
Telecommunications and Radio Engineering
SJR: 0.203 SNIP: 0.44 CiteScore™: 1

ISSN Печать: 0040-2508
ISSN Онлайн: 1943-6009

Выпуски:
Том 79, 2020 Том 78, 2019 Том 77, 2018 Том 76, 2017 Том 75, 2016 Том 74, 2015 Том 73, 2014 Том 72, 2013 Том 71, 2012 Том 70, 2011 Том 69, 2010 Том 68, 2009 Том 67, 2008 Том 66, 2007 Том 65, 2006 Том 64, 2005 Том 63, 2005 Том 62, 2004 Том 61, 2004 Том 60, 2003 Том 59, 2003 Том 58, 2002 Том 57, 2002 Том 56, 2001 Том 55, 2001 Том 54, 2000 Том 53, 1999 Том 52, 1998 Том 51, 1997

Telecommunications and Radio Engineering

DOI: 10.1615/TelecomRadEng.v65.i6.40
pages 527-556

Methods for Blind Evaluation of Noise Variance in Multichannel Optical and Radar Images

S. K. Abramov
Department of Transmitters, Receivers and Signal Processing, National Aerospace University (Kharkiv Aviation Institute), 17 Chkalov St., Kharkiv, 61070, Ukraine
N. N. Ponomarenko
National Aerospace University, Kharkiv, Ukraine
Benoit Vozel
University of Rennes 1, Enssat, Lannion, 22300, France
Kacem Chehdi
University of Rennes I, 6, Rue de Kerampont, 22 305 Lannion cedex, BP 80518, France

Краткое описание

A priori knowledge of noise type and statistical characteristics (at least, noise variance) is a pre-requisite of successful solving many practical tasks of image processing like filtering (denoising), edge detection, segmentation, etc. This relates to both gray-scale and multichannel (multi- and hyper-spectral) images. However, in practical situations noise characteristics depend upon many factors and it is a common practice to determine noise type and variance just for images at hand. It is desirable to perform this operation automatically especially if one deals with multichannel images. Thus, below we consider several approaches and methods for blind evaluation of noise variance. Their accuracy and applicability are analyzed for images with different properties, in particular, various percentage of texture regions. Besides, a set of noise variance values is tested.


Articles with similar content:

OPTIMAL OPERATION POINT IN 3D DCT- BASED LOSSY COMPRESSION OF COLOR AND MULTICHANNEL REMOTE SENSING IMAGES
Telecommunications and Radio Engineering, Vol.74, 2015, issue 20
Benoit Vozel, V. V. Lukin, S. K. Abramov, R.A. Kozhemiakin, I. Djurovic, B. Djurovic
DCT-BASED DENOISING IN MULTICHANNEL IMAGING WITH REFERENCE
Telecommunications and Radio Engineering, Vol.75, 2016, issue 13
V. V. Lukin, S. K. Abramov, J. T. Astola, Karen O. Egiazarian, V. V. Abramova
USE OF SIMILARITY METRICS IN TEMPLATE-BASED DETECTION OF OBJECTS IN IMAGES
Telecommunications and Radio Engineering, Vol.78, 2019, issue 14
O. Rubel, V. V. Lukin, S. K. Abramov, V. V. Abramova
3D DCT Based Filtering of Color and Multichannel Images
Telecommunications and Radio Engineering, Vol.67, 2008, issue 15
P. T. Koivisto, N. N. Ponomarenko, A. A. Zelensky
ON REQUIREMENTS TO ACCURACY OF NOISE VARIANCE ESTIMATION IN PREDICTION OF DCT-BASED FILTER EFFICIENCY
Telecommunications and Radio Engineering, Vol.75, 2016, issue 2
Benoit Vozel, Kacem Chehdi, O. Rubel, V. V. Lukin, S. K. Abramov, J. T. Astola, Karen O. Egiazarian, V. V. Abramova