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This work discusses the advantages of micropolar theory in modeling anisotropic composite materials with microstruc-
ture. A homogenized constitutive model starting from a representative volume element is proposed in order to find an
equivalent continuum. Classical (e.g., Cauchy of Grade 1) continua are not always suitable to accurately approximate
the behavior of such composites because no size effects, nor lack of symmetries in strain and stress, can be taken into
account. This study focuses on composites made of hexagonal rigid particles which interact among themselves through
elastic interfaces, so that the deformation energy of the material is concentrated only at the interfaces. Three particle
geometries are investigated such as orthotetragonal, auxetic, and chiral. Novel results have been achieved by presenting
the behavior of panels with various material symmetries and subjected to concentrated loads.
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1. INTRODUCTION

Composite materials can be studied by modeling interagtmnong their constituents or by homogenizing an equiv-
alent continuum. The former approach generally requirgiséricomputational cost because of the detailed modeling
of particle/matrix interactions such as discrete elemesdeling (Baraldi et al., 2018; Reccia et al., 2018; Yang et al
2010). The latter, as any field theory, is more efficient effectiveness is strongly related to the continuum the-
ory used and the homogenization method adopted to conwegltisical particle/matrix system into an equivalent
continuum (e.g., Budiansky, 1965; Ehlers, 2011; Nematsiiast al., 2013).

In order to model complex spatial interaction effects orcdibg materials in which internal length scales are
not negligible when compared to structural length scalesydgenization techniques of different kind have also been
extended to non-classical continua [see the review in Tusea(2014)]. This latter circumstance becomes significan
when dealing with complex constitutive behaviors depenhdarthe microstructure size, such as strain localization,
and the field equations of the simple (Grade 1) classicalimomin become ill-posed. To this regard, some mod-
els including extra parameters, such as internal lengthingi to take into account the material nonlocality at the
constitutive level only without modifying the classicahkimatics have been proposed by Alibert and Della Corte
(2015), Civalek et al. (2010), Demir and Civalek (2013),4sam and Zhang (2007). Non-local or higher-order de-
formation gradient descriptions, specifically addresseamhtiltiscale computational homogenization, have been also
proposed by Bacigalupo and Gambarotta (2010), Kouznetsoah (2002, 2004), Leismann and Mahnken (2015),
Massart et al. (2007), Peerlings and Fleck (2004), Sluyk €1293), as well as non-local explicit solutions obtained
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for specific cases of elastic composites (Bacca et al., 2Dt3gan and Willis, 1996; Luciano and Willis, 2000;
Smyshlyaev and Cherednichenko, 2000). Within the framkwbfimplicit’ non-local theories concerning models
with additional degrees of freedom (Trovalusci, 2014; Tahal., 2019; Tuna and Trovalusci, 2020), micromorphic
continua, in particular continua with rigid local structufmicropolar), have been satisfactorily applied to vasiou
composites (Addessi and Sacco, 2012; Bouyge et al., 200éstet al., 1999, 2001; Forest and Sab, 1998; Masiani
and Trovalusci, 1996; Onck, 2002; Ostoja-Starzewski etl809; Tekolu and Onck, 2008; Trovalusci and Masiani,
2003, 2005; Trovalusci and Sansalone, 2007).

All the above-mentioned models can be defined as non-locdleaield equations contain internal length pa-
rameters revealing the presence of a hidden microstruethieh can affect the macroscopic behavior and there are
dispersion properties in wave propagation (Kunin, 1968y 8ffect on such non-local materials can be investigated
as parametric simulations in order to better fit experimentiaences.

Homogenization-based techniques have been widely egdltit study material failure behavior. For instance
Jain and Ghosh (2009) presented the damage evolution ofasitepnaterials via a Continuum Damage Mechan-
ics Model. Altenbach and Sadowski (2014) worked on failuned amage analysis of advanced materials. Im-
plementation and computational aspects of multiscaledkerh problems have been proposed by Nguyen et al.
(2012). Collapse of three-dimensional systems made okblasing a nonlinear implementation has been presented
by Yang et al. (2000). Analogously, Greco et al. (2016, 2@D2,8) studied the effects of microfractures and con-
tact simulations on the macroscopic response of elastitebad finite deformations and fiber-reinforced mate-
rials.

When classical kinematics is enriched with extra degredseeidom, homogenization procedures have been
shown to provide more reliable models than in the case obidaklocal continua, as for instance in the study of
wave propagation within the framework of generalized ecanim formulations for composite microcracked bars as
reported by Trovalusci et al. (2010) or also in the study oftiplaysics problems such as thermo-elastic multifield
materials in Favata et al. (2016). In particular, microptteeory introduces as degree of freedom the microrotation,
that is, an additional kinematic feature of the materialnpodifferent from the local rigid rotation (the classical
macrorotation), the rotational feature of the infinitedimaighborhood, and their effects have been widely inves-
tigated by Fantuzzi et al. (2019), Pau and Trovalusci (20I&)valusci and Masiani (2003, 2005), Trovalusci and
Pau (2014) for masonry-like materials. Note that thesetiorta coincide in the couple-stress theory, as well as
in the classical theory [see Masiani and Trovalusci (199®)pendix]. As it has been also recently analyzed by
Fantuzzi et al. (2018), micropolar effects become promntindren geometrical or load singularities are present in
the reference problem, such as concentrated loads, vaidsaterial inclusions and these effects have been also
compared to those of other kinds of non-local continuum desons (Tuna et al., 2019; Tuna and Trovalusci,
2020).

The present work aims at presenting the mechanical micaopehavior of hexagonal lattices (Rizzi et al., 2019;
Trovalusci et al., 2017) with elastic interfaces. Differsalections of hexagonal geometries and interface otienta
lead to a distinct material symmetry (Eremeyev and Piekiaszcz, 2016). In the present work three assemblies are
considered such as regular, hourglass, and chiral pladeshéme hexagonal particles which are all derived from a
hexagonal pattern with sides of all the same lengths (eguélf. The first pattern regards regular hexagonal shapes
having the orthotetragonal symmetry. The second is olddimen regular hexagons but with re-entrant corners; this
give an hourglass shape and auxetic properties to the mladee to an equivalent negative Poisson ratio. Finally, the
third, is an asymmetric pattern given by one re-entranteoand one not re-entrant starting from the regular shape.
The equivalent continuum in this case results to be chisatdupling the classical part of stress/strain with microp-
olar couple stresses/curvatures. Novel results have beeevad by presenting the behavior of the aforementioned
material configurations under concentrated loads.

This paper is structured as follows. First, the Cosseratimonm model is briefly presented in order to intro-
duce current quantities and symbols. Second, a parametx@gonal geometry based on four parameters is pre-
sented and the investigated patterns are shown and defihed, The present in-house finite element implemen-
tation is presented using linear finite elements with reduogegration. Finally, numerical applications are dis-
cussed by comparison among the three considered geomatidephysical deduction from the contour plots are
given.
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Hexagonal Anisotropic Materials as Micropolar Continua 267

2. MICROPOLAR CONTINUUM

In micropolar theory, the continuum considers the micration of the material particles which is added to the Carte-
sian displacements. The material particle of a micropatentiouum experiences displacements and rotations; in a
3D framework there are three displacements and threegnsatiomponents, which become two displacements and
one rotation component in the 2D case here considered sththdisplacement vectdu}? = {u; up w} applies.

In the present 2D linearized framework the strain displazemector is represented ds:} 7 = {{e1} {e2}}, where
{e1} = {e11 €22 k1 ko} and{ex} = {e12 €21} and whereeqy, €22, €12, €21 are the in-plane normal and shear strains
andk;y, k, are the micropolar curvatures. Note that the strain compigrege not reciprocat;» # €21. The kinematic
compatibility relations can be written a&1} = [D1]{u} and{ez} = [Dy]{u}

8/8%1 0 0
0 0/0x 0 0/0x 0 1
[D1] = , (Do) = 1)
0 0 0/0x, 0 0/0x; -1
0 0 8/8%2

Note that in general the microrotatiow, in the micropolar model is different from the local rigidtation (macro-

rotation), 0, defined as the skew-symmetric part of the gradient of digmento = %(% — %) and the dif-
. . . . x1 . 0x2

ference between the two rotatiorts— w, defines the strain measure of the relative rotation thatesponds to

the skew-symmetric part of the straié: = %(g—gi — g—zg). When the relative rotation equals zefb,= w and

E10 = €91 = %(g—gg + g—gf), as in the classical continuum, the micropolar continuuobges a continuum with
constrained rotations (Masiani and Trovalusci, 1996; 8okski, 1972). In the following, we focus of — w as
peculiar strain measure of the micropolarity of the modelarstudy.

Analogously, the work-conjugated stress measures of tbepolar model are represented in the vecfor:” =
{{o1} {o2}} with {01}T = {011 022 1y W2} @nd{o}? = {012 021}, whereo;; for i, j = 1, 2 represent the classical
normal and shear stress components, gndu, are the microcouples. The stress components are not realpro
012 # 021, and the couple stress components, i, have to be introduced in order to satisfy the moment eqiulib
of the micropolar body. From the virtual work principle watht introducing the constitutive equations, described

below, equilibrium equations in terms of stresses and roauples can be carried out 88 + 6V = 0, so that
U = /{&}T{a} dy = / ({551}T{ol} + {552}T{02}) dy
Y Y )
= {éu}Th/ ([Dl]T{Gl} + [Dz]T{Gz}) dA
A

h being the thickness of the 2D domain which can be considesachéary for plane strain case, and where the
variation of potential of the external loads reads:

_ UT o UT
5V = /A (5u)T{f} dA /5 (5u)7{p} dS 3

where{f} and {p} are the vectors of body forces and boundary tractions, ctisply. Finally, balance domain
equations are given by

[D1]" {01} + [D2]" {02} = {f} (4)

and boundary tractions as:
{p} = {p} (5)

where{p} are stresses and microcouples applied at the boundary.
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The micropolar constitutive equations take the form:

{{Ul}} lCn C12
{02}  |Ca Cz

{e}
{{52}} ©

and
As111 A2 Bun B A112 Aq121]
A1120 Az By Box Axo Az
Ci1= , 2=
Bi11 Byy Din Do B1o1 Bonn
7
Bi1p By Dip Dy By Boio] )

A1112 Az Bir Bix A1212 A1

Cor = ) 22 =

Anzr Az Boun Borz A1221 A1)

Due to hyperelasticity the constitutive matrix is symmeghiCy, = (CZTI. Note that the symbold,;;x;, B;;,, and
D;; (fori,4,k,1 = 1,2)in definitions (7) can be collected in the matriédgdd, andD as in Fantuzzi et al. (2019) and
Leonetti et al. (2019). The homogenization technique prieseby Trovalusci and Masiani (1999) is used to identify
the constitutive constants of Eq. (6) from a given represer volume element (RVE) of elastically interacting dgi
block assemblies.

The virtual work principle allows us to write the variatidrséatement of the equilibrium for the present microp-
olar bodysU + 6V = 0, where the variation of the strain energy in terms of kingenzarameters reads:

SU = / {8e}{c} dy
v
= /v ({581}TC11{81} + {8e1} " Crofea} + {0e2}  Cor{er} + {Saz}T(sz{az}> dy (8)
= {8u}” {h /A ({Dl}TCn{Dl} +{D1}"C12{ D2} + {D2} " Can{ D1} + {DZ}T(sz{Dz}> dA} {u}

In the following, the finite element approximation will beied directly to the variational principle as that to
Egs. (3) and (8).

3. HEXAGONAL PATTERN

The irregular pattern of Fig. 1 has been taken from the ssumlieScherphuis (2019) which is given by convex hexagon
tilings of type 1 (P6). The correspondent Representativariwe Element (RVE) is given in Fig. 1 which shows the
centroids of the tiles and outward unit normal vectors athloek interfaces used for computing the constitutive
matrix according to the procedure presented by TrovalustiMasiani (1999).

Given a list of input parameters: three anglgs o, o3, relative length/,., and a tile scales, the single hexagon,
tile, can be defined. Using simple geometric formulas the R¥Ebe defined by translations and mirroring of tiles.

The single tile is defined by a parallelogram (skew rectgrayhel two isosceles triangles with the base attached
to the two shortest opposite sides of the parallelogram.

With reference to Fig. 1, the nodal coordinates of the sititgeare given by:A = (0,0), B = (I3,t), C =
(ll + Is,t + 12/2), D = (ll,t + lz), E = (0, lz), F = (714,12/2) wherel, = Sﬁ), li = s — o, t = l1tan oy,
lg = %tan &2, ls = %tan a3 ands is a scale parameter. Relations among tile side lengtttsf can be easily
carried out using classical geometric relationships.

By changing the geometric parameters listed above, seguattairns can be obtained as the ones depicted in Fig. 2
which are termed for future reference: regular, hourgkasd,chiral, respectively. They have been obtained by gettin
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Unit parallelogram

Relative length I, = 40 az =45

FIG. 1: Irregular hexagonal pattern and single tile with geomgdaametersy = 25°, I, = 40,0, = 45°, oz = 30°

(a)
FIG. 2: Hexagonal patterns given by geometric parametgrs= 0°, I, = 1/\1/0§°+1; (a) regulara, = oz = 30°, (b) hourglass
ay = az = —20°, and (c) chiral-o; = ag = 30°

a equilateral geometry (all the sidesto f — have the same length) withy = 0°, [,. = % =~ 63.3975, and by
varying «; andos angles as:

1. Regularo, = oz = 30°

2. Hourglassu, = g = —20°

3. Chiral:—op = o3 = 30°

For the three scales considered the tiles have the follogigeglengths:
- s=1 — 1;,=0.3660

- =05 — 1,=0.1830

- =025 — 1,=0.0915

so smaller scales lead to smaller tile sizes and vice versa.

4. FINITE ELEMENT IMPLEMENTATION

The present finite element framework is based on the prewtudies by Fantuzzi et al. (2019) and Leonetti et al.
(2019). However, the present implementation has been ipeeft with an in-house MATLAB code as an extension
of the classical 2D plane strain Cauchy continuum, as ptedéry Ferreira (2008).

As it is well-known the classical finite element method enéx an approximation through nodal kinematic
parameters agu} = N{d°}. In this work finite elements with four nodes (Q4) are consideso that the vector of
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nodal parameters readd®}” = {ul...u} ui...u3 wl... w?}, thus each finite element has 12 degrees of freedom
(DOF). Linear shape functions are considered for the ptésgiementation with reduced integration for the micro-
rotationw because unsymmetric straieg ande; will not be given by the same order of quantities. The matfix o
the shape functions (of sizex312) takes the form

vy {0y {0}
N=1{0} {N} {0} ©)
{0y {0} {n}

where{N} is the vector of the Lagrangian linear shape functions. Sonpéementations consider different shape
functions among displacements and microrotations (Fanttzal., 2018; Leonetti et al., 2019) in order to avoid
element locking due to shear strains that have derivatitteegblanar strains summed with microrotation. By inserting
the finite element approximatign:} = N{d°} in the strain energy definition (8) as:

U = {éde}Th /A ({Bl}T(Cll{Bl} + {Bl}T(Clg{Bz} + {BQ}TCZJ_{B]_} + {BQ}T(CQQ{BQ}>d.A {de} (10)

where{B;} = {D;}N and{B,} = {D,}N, thus the element stiffness matrix is

[K€] = [K7] + [K3] (11)
where
[Ki] = h / ({Bl}T(Cll{Bl} +{B1}"Cio{ B2} + {Bz}T(Czl{Bl}>dA (12)
A
5= [ ({Bz}Tczz{Bz})dA 13)

Full integration (2x 2 Gauss integration) is performed (5], whereas shear strain terif#ss] are integrated
using single-point reduced integration.
Finally, potential energy (3) becomes:

8V = —8{a°}7 h/ NT{f} av — 8{d°}* / NT{p} dS = —6{d°}T ({F°} + {P°}) (14)
A S

where{F°} and{P¢} are volume and surface force vectors, respectively. In tasgmt work, only surface tractions
are applied so th&tFe} = {0}.

4.1 Post-Computation

Since the present formulation is based on displacementsger to carry out strain and stress values at discretizatio
nodes post-computation must be performed. It is well-distedd that derived quantities should be post-computed at
integration points (Reddy, 2004, 2017). For Q4 elementstiegration points used are a<2 Gauss—Legendre grid.
Strain and stresses are recovered from the kinematic cdriipatind constitutive equations, respectively. The
relative rotationp — w, is used, as in previous papers (Fantuzzi et al., 2018, 2Gk$hetti et al., 2019; Trovalusci
and Masiani, 1999), for underlining the micropolar effegith respect to the classical continuum. Relative relation

19 19 .
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However, field variables are more commonly defined at gridesod@hus, extrapolation of each field value is
carried out for Q4 elements using the following formula:

wy 1+05/3 -05 1-05/3 05 i
Wy -0.5 1+ 0.5V3 -05 1-05V3| |,
ws| |1-05/3 —05 1405/3 —05 3 (16)
[ -05 1-05/3 -05 1+05/3] |4
wherew; fori = 1,..., 4 are the extrapolated nodal values wheregfori = 1, ... 4 are the correspondentinternal

field values.
Finally, inter-element averaging is applied with equalgt®s in order to have single values at each nodal point.
This final procedure allows us to have an array of values onegoh mesh grid point without intersections.

5. NUMERICAL RESULTS

A square panel of sidé = 4 is considered subjected to a top pressure on a limitedaareal /4 with a resulting
equivalent concentrated force Bf= 10° pointing downward. The panel is clamped at the bottom. A legguared
FE mesh of 16< 32 elements (by taking advantage of problem symmetry) isidened and depicted in Fig. 3.

In this section the numerical results for the three citechgetoies are presented. In particular, the contour plots of
displacementsy; (horizontal), and., (vertical), stressess;; (horizontal),o,, (vertical), and relative rotatio® — w
are shown for each geometry.

The homogenization procedure follows the approach destridy Trovalusci and Masiani (1999), where the
adopted spring stiffness at the elastic joint interfaces is

k=" % ko_o (17)
"7 1lo 780 "

where K1 and Ky are the stiffnesses of translational and rotational sgrifmergetic equivalence is used to carry

out rotational stiffnesses as:
d B d? d?

kn = KT(1,1)§, k. = kn? = KT(l,l)Z (18)

whered is the current interface length between two rigid partiésvhich the interactive stiffness is computed.

-1.5 -1 -0.5 o 05 1 15 2 25 a 35

FIG. 3: Current mesh used 16 32 Q4 elements
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272 Fantuzzi, Trovalusci, & Luciano

For all three different scales, stiffness daté{and Kz, and consequently,, andk,) remain unchanged. The
ratios between tile length and panel widtliL are 10.93, 21.86, 43.72 by decreasing scale, respectiadyconsti-
tutive matrices are presented below in compact and extemaéx form:

A1111 A1 A1 A1 B Biw

Az Axoin Azop1 Boai Bax

A B Ap1o A1221 Bia1 Bix
BT D Azi21 Boin Bop
Dy Dy

sym Do, |

5.1 Orthotetragonal Hexagons

The aforementioned regular hexagons can be carried out Rergeometry Scherphuis (2019) by setting:=
63.3975,x; = 0°, xp = g = 30°. The results for the three scales= 1, 0.5, 0.25 are depicted in Fig. 4, where tile
centers and link orientations are shown for calculatiorppses (Trovalusci and Masiani, 1999).

The correspondent constitutive matrices appear to betettagonal (symmetric with respect to a9@tation)
as:

(4968776 07925 0 0 0 0 ]
0.7925 4968776 O 0 0 0
" 0 0 4952927 07925 0 0
clsh = (20)
ortho
0 0 07925 4952927 0 0
0 0 0 0O 333376 0
o 0 0 0 0 33376
1 1 1
0.5 0.5 0.5

60
6o
9
$°°

-0.5 -0.5 -0.5

-1 -1 -1
-1 05 0 05 1 -1 -05 0 0.5 1 -1 -05 0 0.5 1

FIG. 4: Regular hexagonal pattern RVE with geometric parameters- 0°, [, = %, xy = g = 30° at different scale
s =1,0.5,0.25 from left to right, respectively
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(2484388 (03962 0 0 0 0
0.3962 2484388 0 0 0 0
(s—05) 0 0 2476463 03962 0 0
Cortho = (21)
0 0 03962 2476463 0 0
0 0 0 0 41672 0
0 0 0 0 0 41672
(1242194 01981 0 0 0 0 ]
0.1981 1242194 0 0 0 0
(s—0.25) 0 0 1238232 01981 0 0
Cortho = (22)
0 0 01981 1238232 O 0
0 0 0 0 05209 O
0 0 0 0 0 05209

In such orthotetragonal assemblids;11 = Az and A1 = As121 as well asDyy = Dy, moreover, there is
no coupling between normal and shear stresses and at thetisagnieetween microcouple$), = 0) andB = 0
and thus no elastic coefficients relating stresses andsteaid coefficients relating microcouples and curvatures
are expected. A very small Poisson effect is also shown. &tiesr between elastic coefficients relating stresses
and strains between different scales is 2, whereas betwaafficients relating microcouples and curvatures is 8
[A(S:l) _ ZA(S:O'S) _ 4A(S:O.25) and]D)(s:l) _ 8D(s:0.5) _ 64D(S:O.25)].

The numerical results obtained are shown in Figs. 5-9 fatttlee mentioned scales. We can observe thatin such
a case of localized load the micropolar model is able to bdtstribute the load depending on the material internal
length related to the tile size. In particular, the vertidelplacementy,, tends to concentrate on the central part of
the wall for smaller scales with more remarkable values vaipect to larger scales (Fig. 6). Due to vertical pressure
the body also tends to move horizontally, Figure 5 displays such effect which is more evident for $enalcales.

Horizontal pressures; 1, (Fig. 7) are almost negligible for larger scales. For sreediles these stresses concen-
trate in the area below the applied load. The same effect is ailear for the vertical stress;,, where a distinct flux
of stress is clearly visible for smaller scales (Fig. 8).

Finally, the relative rotatiorf — w, plot (Fig. 9) shows a very small micropolar effect as expédtince orthote-
tragonal materials are known to be very close to Cauchy coatias already discussed in Trovalusci and Masiani

(1999).

5.2 Hourglass Hexagons

By keeping the symmetry of the single tile and equilatetaldegments, the inner angles = oz = —20° are set to
a negative value. Graphical representation of the thrég wéh different scale is given in Fig. 10.

This leads to an auxetic behavior of the homogenized mtetith negative Poisson coefficienti(;,, < 0), for
all three cases considered as it is shown by the constitotateices given below:

[2092 —-05 0 0 0 0

—-0.5 10597 0 0 0 0

o) 0 0 10568 05 0 O
(Chour = (23)

0 0 —-05 2082 O 0

0 0 0 0 119 O

0 0 0 0o 0 67
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——ar
12
l i
6
2
0
-2

FIG. 5: Q4 formulation. Horizontal displacemeni for regular hexagonal patterns with parameters= 0°, [, = —%

14

®

~

1//3+1°
a2 = ag = 30° and scales = 1, 0.5, 0.25 from left to right, respectively.
&- 0 0 0
\ -10 g -10 -10
-20 -20 -20
30 -30 -30
-40 -40 x -40
-50 -50 -50
-60 -60 -60
-70 -70 -70
FIG. 6: Q4 formulation. Vertical displacement, for regular hexagonal patterns with parametejs= 0°, [, = I/ITO;’H,

a2 = ag = 30° and scales = 1, 0.5, 0.25 from left to right, respectively.

N\ N\
0 0
-1000 -1000
-2000 -2000
-3000 -3000
-4000 -4000
-5000 -5000
-6000 -6000

7000 -7000

-1000

-2000

-3000

-4000

-5000

-6000

-7000
FIG. 7: Q4 formulation. Horizontal stress; for regular hexagonal patterns with parameteys= 0°, [, =

100 oy —
1/\/§+1 y X2 3
30° and scales = 1, 0.5, 0.25 from left to right, respectively.
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] 0 0
-1000 -1000 -1000
-2000 -2000 -2000
-3000 -3000 -3000
-4000 -4000 -4000
-5000 -5000 -5000
-6000 -6000 -6000
-7000 -7000 -7000
-8000 -8000 -8000
-9000 -9000 -9000

FIG. 8: Q4 formulation. Vertical stress,, for regular hexagonal patterns with parameters= 0°, 1, = —%_ o, = a3 = 30°

1/vV3+1’
and scales = 1, 0.5, 0.25 from left to right, respectively.

0 0 0
A -1 -1
-2 -2 -

3 -3 -3
-4 -4 -4
5 -5 -5
6 -6 -6
7 -7 -7
8 -8 -8
-9 -9 -9

)

100

FIG. 9: Q4 formulation. Relative rotatiod — w for regular hexagonal patterns with parameteys= 0°, I, = VA 02 =
a3 = 30° and scales = 1, 0.5, 0.25 from left to right, respectively.
1 1 1
0.5 0.5 0.5
0 0 0
-0.5 -0.5 -0.5
-1 -1 -1
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
FIG. 10: Hourglass hexagonal pattern RVE with geometric parameters: 0°, [,, = 1/\1/0;“, ay = oz = —20° at different

scales = 1, 0.5, 0.25 from left to right, respectively
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(1046165 —0.2710 0 0 0 0
—0.2710 5298742 0 0 0 0
- 0 0 5283768 —0.2710 O 0
Cioma® = (24)
0 0 —02710 1041057 O 0
0 0 0 0 14892 0
o 0 0 0 0 84671
523083 —0.1355 0 0 0 0]
—0.1355 2649371 0 0 0 0
- 0 0 2641884 —0.1355 0 0
C(s=025) _ (25)
hour 0 0 —0.1355 520529 O 0
0 0 0 0 01861 O
0 0 0 0 0 10584

The ratio between elastic coefficients relating stressesstrains and coefficients relating microcouples and
curvatures results as in the previous cas@Tl) = 2A (=05 = 4A(5=0.25; n(s=1) — gP(s=0.5 = 64N(=029] |n
addition, A1111 = Ao121, Ao & A1p1oWhere the former are circa 5 times the latter arébh,, =2 D).

Numerical results are given in Figs. 11-15. The auxeticcéffan be clearly seen in the horizontal displacements
u plot (Fig. 11) where the particles move on the right—towalaspanel central area—this effect is quite small for
larger particles and increases rapidly for smaller scales.

Vertical displacements,, (Fig. 12), stresses;11, 02, (Figs. 13 and 14), have comparable behavior with respect
to the correspondent orthotetragonal cases but they haatlesrimtensity. It is remarked that the vertical stress is
better diffused within the panel more in the case of largeg,sh fact remarkable stress values are shown in Fig. 14
which are higher than the ones of the correspondent ortlagimtal case 8.

Relative rotationf — w (Fig. 15), shows a clear micropolar effect which increaskemthe scale is decreased;
this means that such a micropolar effect is stronger for lempérticles.

—4

14 14 14

o

-2
FIG. 11: Q4 formulation. Horizontal displacement for hourglass hexagonal patterns with parametgrs- 0°, [,, =
oy = az = —20° and scales = 1, 0.5, 0.25 from left to right, respectively.

100
1/v/3+1’
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FIG. 12: Q4 formulation. Vertical displacement for hourglass hexagonal patterns with parametars= 0°, I, = —%
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1//3+1°
oy = ag = —20° and scales = 1, 0.5, 0.25 from left to right, respectively.
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FIG. 13: Q4 formulation. Vertical stress; ; for hourglass hexagonal patterns with parameigrs- 0°, [, = %, oKy = X3 =

—20° and scales = 1, 0.5, 0.25 from left to right, respectively.
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-3000 -3000 -3000
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FIG. 14: Q4 formulation. Vertical stress,, for hourglass hexagonal patterns with parameters- 0°, 1, = —%9 _ &, = oz =

1/v/3+1’
—20° and scales = 1, 0.5, 0.25 from left to right, respectively.
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-9
FIG. 15: Q4 formulation. Relative rotatioi — w for hourglass hexagonal patterns with parametars= 0°, I, =
ar = ag = —20° and scales = 1, 0.5, 0.25 from left to right, respectively.

100
1/v/3+1’

5.3 Chiral Hexagons

The present geometry is obtained considering equilateseddons with inner angleso, = xz = 30°. Graphical
representation of the three cells with different scalevegiin Fig. 16.
The present geometrical selection leads to the followingdgenized materials for the three given scales:

(3312517 0 0 0 0 0 17
0 7453164 0 0 0 45400
(s=1) 0 0 7429390 0 0 0
Cani = (26)
0 0 0 3301951 0 0
0 0 0 0 222250 0
L O 455400 0 0 0 50064

0.5 05¢r 05¢r

B

-05¢+F

-0.5 -05

-1 -1 -1
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1

100
1/v/3+1’

FIG. 16: Chiral hexagonal pattern RVE with geometric parametars= 0°, [, = —op = oz = 30° at different scale

s =1,0.5,0.25 from left to right, respectively
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11656259 0 0 0 0 0 7
0 3726582 0 0 0 113850
_ 0 0 3714695 0 0 0
Can = (27)
0 0 0 1650976 0 0
0 0 0 0 27781 0
L O 113850 0 0 0 62508 |
[82.8129 0 0 0 0 0 ]
0 1863291 0 0 0 28462
=029 _ 0 0 1857347 0 0 0 28
0 0 0 825488 0 0
0 0 0 0 03473 0
| O 2.8462 0 0 0 07813]

Note that in this case a coupling between elastic coeffisimiating stresses and strains and coefficients relating
microcouples and curvatures occurs, implying couplingvieen normal stress,, and curvaturé:;, and microcouple
u, and normal strairk,. No other coupling takes place (also no Poisson effect ierobsl). Such behavior is due
to the selection of equal and opposite anglas, = a3 = 30° which break material symmetry and neutralize
lateral contraction/expansion. The ratio between coefiisi relating stresses and strains and coefficients rglatin
microcouples and curvatures is the same as in the previoamstiuctures 5= = 2A(=05 — 4 (=029
andDG=Y = gD(=05 — 64D(s=025 |n addition, sinceB # 0, BG=Y = 4B(==05 — 16B(s=029]. Similarly
to the auxetic configuratiomdii1; & Azi21, Aoz = Aiz10, Where the former are circa 2.25 times the latter and
2.27Dq11 = Doy,

The numerical results are given in Figs. 17-21.

Since no Poisson effect is given in the constitutive equatitegligible horizontal displacement (Fig. 17) and
stressoy; (Fig. 19) are observed. Vertical displacemep{(Fig. 18) and stress,, (Fig. 20) have a similar trend with
respect to the other cases but closer to the auxetic one. duirng in the present microstructure witBpo, # 0

———

14 14

-2
FIG. 17: Q4 formulation. Horizontal displacement for chiral hexagonal patterns with parameteis= 0°, [, = 1/f/°§f’+1,

—oap = ag = 30° and scales = 1, 0.5, 0.25 from left to right, respectively.
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FIG. 18: Q4 formulation. Vertical displacemeny for chiral hexagonal patterns with parameteis= 0°, [,, = 1/\1/050“, —0p =
= 30° and scales = 1, 0.5, 0.25 from left to right, respectlvely.
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FIG. 19: Q4 formulation. Vertical stress;; for chiral hexagonal patterns with parametets= 0°, [,, = 1/\1/050“, —0p = &3 =
30° and scales = 1, 0.5, 0.25 from left to right, respectively.
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FIG. 20: Q4 formulation. Vertical stress;; for chiral hexagonal patterns with parametats= 0°, [,, =
30° and scales = 1, 0.5, 0.25 from left to right, respectively.
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100

FIG. 21: Q4 formulation. Relative rotatio — w for chiral hexagonal patterns with parametefs= 0°, [, = VETEL

a3 = 30° and scales = 1, 0.5, 0.25 from left to right, respectively.

—0p =

gives a lower relative rotation effect than the one in theetiaxmaterial but its variation is not uniform close to the
symmetry axis, because the vertical pressipeis coupled with the vertical curvatuke. This effect can be clearly
observed for any scalein Fig. 21.

6. CONCLUSIONS

The present work investigates the static behavior of malgawith three types of hexagonal microstructures desdribe
as equivalent micropolar media. Such microstructuresygiedl of polycrystals with thin interfaces such as alumina
(Al,03), zirconia (ZrQ), zinc ozide (ZnO) or tungsten-carbide (WC) just to cite &.f€he three selected patterns
provide orthotetragonal, auxetic, and chiral material syatries and each one showed some peculiarities and some
interesting outcomes related to the micropolar behavissefnblies of regular hexagons have an orthotetragonal
behavior and it has been shown that their homogenized bmhiavtlose to the behavior of classical elastic bodies
(Masiani and Trovalusci, 1996; Trovalusci and Masiani, 20@n the contrary, the other configurations showed
strong nonlocal effects, related to the internal materid,svhich brought a larger stress diffusion within the body
and reduced displacements. All these aspects could belunediemostly because a micropolar continuum has extra
rotational degrees of freedom with respect to classicaticonm. If the coupling effect among classical and microp-
olar quantities wanted to be observed elastic interfacemngnparticles have to be as less symmetric as possible.
Other geometries and interfaces configurations will be idened in future works in order to better understand the
prediction of micropolar effects in microstructured métks.
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