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Reservoir data is usually scale dependent and exhibits multiscale features. In this paper we use the ensemble Kalman
filter (EnKF) to integrate data at different spatial scales for estimating reservoir fine-scale characteristics. Relationships
between the various scales is modeled via upscaling techniques. We propose two versions of the EnKF to assimilate the
multiscale data, (i) where all the data are assimilated together and (ii) the data are assimilated sequentially in batches.
Ensemble members obtained after assimilating one set of data are used as a prior to assimilate the next set of data. Both of
these versions are easily implementable with any other upscaling which links the fine to the coarse scales. The numerical
results with different methods are presented in a twin experiment setup using a two-dimensional, two-phase (oil and
water) flow model. Results are shown with coarse-scale permeability and coarse-scale saturation data. They indicate that
additional data provides better fine-scale estimates and fractional flow predictions. We observed that the two versions of
the EnKF differed in their estimates when coarse-scale permeability is provided, whereas their results are similar when
coarse-scale saturation is used. This behavior is thought to be due to the nonlinearity of the upscaling operator in the
case of the former data. We also tested our procedures with various precisions of the coarse-scale data to account for the
inexact relationship between the fine and coarse scale data. As expected, the results show that higher precision in the
coarse-scale data yielded improved estimates. With better coarse-scale modeling and inversion techniques as more data
at multiple coarse scales is made available, the proposed modification to the EnKF could be relevant in future studies.

KEY WORDS: Kalman filter, reservoir engineering, spatial uncertainty, multiscale estimation, parameter
estimation

1. INTRODUCTION

Broadly speaking, the measured data used for description of reservoir porosity and permeability characterization
consist of static and dynamic data. Static data such as well logs and core samples can resolve heterogeneity at a scale
of a few inches or feet with high reliability. However, dynamic data such as fractional flow or water cut (neglecting
any pre-existing mobile water in the reservoir, this could be defined as the ratio of the injection fluid to the total fluid
produced at the production wells), pressure transient, and tracer test data typically scan the length scales comparable
to the interwell distances. Additional dynamic data such as time-lapse seismic images [1] can provide improved spatial
sampling but at a lower precision. The ensemble Kalman filter (EnKF) is now being used in a number of studies for
reservoir history matching. Some of the recent studies are listed in Evensen [2]; also see Nævdal et al. [3], Wen and
Chen [4], Gu and Oliver [5], and Jafarpour and McLaughlin [6]. In general, reservoir data is often scale-dependent and
exhibits multiscale features, and integration of additional multiscale data could further reduce the uncertainty (see Lee
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et al. [7], Efendiev et al. [8, 9] and references therein). Also, it is important to resolve fine-scale heterogeneity for
various purposes such as enhanced oil recovery, environmental remediation, etc. With that perspective, integration
of data at coarse and fine scales is an important objective. Computationally efficient assimilation of multiscale data
using EnKF to estimate fine-scale fields for subsurface characterization is the main topic of this study. The main reason
we used EnKF in this paper is because it requires fewer ensemble members than the particle filters (where, rather than
updating the ensemble members model state, we update the probability assigned to each ensemble member based on
model data misfit), e.g., see [10] and references therein for further details.

In this paper, apart from the water-cut data, we consider two kinds of coarse-scale measured data as well. The
coarse-scale data are assumed to be permeability and/or saturation at some specified level of precision. The unknown
variables (permeability, at the fine scale), are estimated using a modification to the EnKF algorithm, linking the data
at different scales via upscaling (from the finest to the coarsest scales). The main idea behind upscaling is to obtain
aneffectivecoarse-scale permeability which yields the same average response as that of the underlying fine-scale field,
locally. First we consider coarse-scale permeability data, which could be obtained either from geological considera-
tions or coarse-scale inversion of dynamic, fractional flow data on a coarse grid [7, 9] or also using Markov Chain
Monte Carlo (MCMC) techniques [8]. This coarse-scale, static data could be viewed asprior information regarding
the permeability or in other words, aconstraintwhich is to be satisfied up to the prescribed variance while obtaining
the fine-scale estimates in every data assimilation cycle using the EnKF. Upscaling methods relate the solution at the
fine scale to the coarse scale; therefore, in the Kalman filtering context, it amounts to modeling a nonlinear observation
operator. In this paper we study two ways to assimilate the coarse-scale data using the EnKF. The standard EnKF [2]
could be used for assimilating all the available data in one step, or alternatively, the measured data could be used in
batches. For example, the estimate with one data becomes a prior while assimilating the other measured data; further
details are given in Section 3.

The second kind of coarse-scale observed data we consider is dynamic and is motivated based on the increasing
availability of time-lapse seismic images (or 4d seismic data). Integration of inverted 4d seismic data (at fine scale)
using the EnKF has been addressed in Dong et al. [11] and Skjervheim et al. [12]. In this article we consider the
seismic data, not to correspond to the finest scale but to a coarse scale, since time-lapse seismic data typically have a
lower spatial resolution compared to the fine-scale geologic models [13]. Since the time-lapse seismic data is collected
only at specific time intervals, we used coarse-scale fluid saturation as measured data to be available at a prescribed
level of precision (which accounts for the inaccuracies involved in inversion of 4d seismic data) and only for certain
assimilation cycles. Therefore, unlike the coarse-scale static permeability data considered earlier, the coarse-scale
saturation data is assimilated only in certain assimilation cycles (see Section 4.3 for details).

Following is the plan of this paper. For the paper to be self-contained and for notational clarity, we briefly review
the governing equations and sequential data assimilation using the EnKF in Section 2. This is followed by a description
of the EnKF for assimilation of coarse-scale data in Section 3. For our numerical results in Section 4, we consider
a five-spot pattern, with the injection well placed in the middle of a rectangular domain and four production wells
located at the vertices of the rectangle. A reference case is used to providetrue data, which is randomly perturbed to
obtain synthetic measurements in a twin experiment setup. After presenting the assimilation results with both coarse-
scale permeability and saturation data, we conclude with some directions for future work in Section 5.

2. PRELIMINARIES

2.1 Fine-Scale Model

In this paper we consider two-phase flow in a subsurface formation under the assumption that the displacement is
dominated by viscous effects. For simplicity, we neglect the effects of gravity, compressibility, and capillary pressure,
although our proposed approach is independent of the choice of physical mechanisms. Also, porosity is considered
constant. The two phases are referred to as water and oil, designated by subscriptsw ando, respectively. We write
Darcy’s law for each phase as follows:

vj = −krj(S)
µj

κf∇pr, ∇ · [λ(S)κf∇pr] = h (1)
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λ(S) =
krw(S)

µw
+

kro(S)
µo

, f(S) =
krw(S)/µw

krw(S)/µw + kro(S)/µo

v = vw + vo = −λ(S)κf · ∇pr (2a)

φ
∂S

∂t
+ v · ∇S = 0 (2b)

The above descriptions are henceforth referred to as thefine-scalemodel of the two-phase flow problem. Hereκf is
the (fine-scale) permeability of the medium,λ(S) is the total mobility,µj denotes phase viscosity,pr is the pressure,
h is the source term, andφ andS denote porosity and water saturation (volume fraction), respectively.

2.2 Sequential Estimation Using EnKF

Using dynamic measured data such as water cut, we can sequentially estimate the unknown parameters (permeabi-
lity, porosity, etc.) and state variables such as pressure, water saturation (two-phase flow) and production data at well
locations using the EnKF [3, 5, 6, 14]. The combined state-parameter to be estimated is given byΨ = [ln(κf ), pr , S,
Wc]T , whereln(·) is natural logarithm of the permeability field,Wc denotes water cut, and porosity is assumed to be
known.

The EnKF introduced by Evensen [15] is a sequential Monte Carlo method where an ensemble of model states
evolves in state-space, with the mean as the best estimate and spread of the ensemble as the error covariance, as
summarized in the following steps. Each of the ensemble members is forecasted independently,1

Ψ(i)
n+1 = F [Ψ(i)

n ] (3)

whereF [·] is the forecast operator [fine-scale model Eqs. (1) and (2b)], superscript(i) denotes theith ensemble
member; from this point we on drop the time subscript. The ensemble mean and covariance are defined as

Ψ =
1

Ne

Ne∑

i=1

Ψ(i) (4a)

Pf ≈ 1
Ne − 1

A (A)T (4b)

whereA = (b(1), b(2), . . . , b(Ne)), b(i) = Ψ(i) −Ψ, andNe is the number of ensemble members.
In a twin experiment, the observed water cutWo

c is related to the truth viaWo
c = H[Ψt], whereH[Ψt] is the true

water cut. For each ensemble member, we randomly perturbWo
c to generate observational samples,

y(i) = Wo
c︸︷︷︸

=H[Ψt]

+ν(i) (5)

whereν(i) simulates observational error sampling, obtained as independent and identically distributed (iid) sam-
ples [16] from a normal distribution with zero mean and varianceR. We note that if only the water-cut data is being
measured, the mapping from model to observational spaceH is trivially equal to[0 0 0 I], sinceΨ=[ln(κ), pr , S,Wc]T.

The forecasted ensemble Eq. (3) is updated by assimilating the observed data,

Ψ̃(i) = Ψ(i) + K(y(i) − H[Ψ(i)]) (6)

1In this work we focus primarily on assimilation of coarse-scale data using the EnKF, its feasibility, and impact on fine-scale
estimates with different kinds of coarse-scale data (Section 3); hence, we neglect modeling errors, which will be addressed in the
future.
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whereK is the Kalman gain, given by
K = Pf HT [HPf HT + R]−1

Computationally efficient implementation of the EnKF is discussed, for example, in [2] and [17] (note that the en-
semble error covariance, before or after assimilation, is not explicitly computed and we instead use the ensemble
members for obtaining the covariance information). We use the above set of assimilated ensemble states,{Ψ̃(i)}Ne

i=1,
in the fine-scale simulation model Eq. (3) for prediction until the next set of observational data is available.

3. COARSE-SCALE DATA ASSMILATION

The EnKF presented so far used only the dynamic production data (water cut)y with error ν = y − H[Ψt], ν ∼
N (0, R) to update the ensemble Eq. (6). In addition toy, we now consider another independently measured data with
independent errorsz, which isstaticand is on a coarser scale compared to the fine-scale variables in Eqs. (1) and (2b).
We assume that the corresponding measurement error is given byω = z−U[Ψt], with zero mean andQ covariance,
ω ∼ N (0, Q), andU is a mapping of fine-scale variablesΨ to coarse-scale data,z, i.e., U : Ψ 7→ z. Then the
likelihood ofz is given by

p(z|Ψ) ∝ exp
{
−1

2
(z− U[Ψ])T Q−1 (z− U[Ψ])

︸ ︷︷ ︸
Jz

}
(7)

If this static dataz corresponds to coarse-scale permeability data (as considered in [9] and [7]), thenU = [U 0 0 0],
whereU : κf 7→ κc is a nonlinear mapping that maps the fine-scale permeability field (κf ) to coarse-scale field (κc)
via an upscaling procedure (e.g., Durlofsky [18] and Durlofsky [19]). (Details are provided in Section 3.3.) Alterna-
tively, if z corresponds to coarse-scale saturation inverted from 4d seismic data (as mentioned in the Introduction), then
U = [0 0A0], such thatA is a mapping of fine-scale saturationSf to coarse-scale saturationSc = ASf . (Here we
consider a simple volume averaging forA; further details are provided in Section 4.3).

Now, our goal is to obtain an estimate which is based on both water-cut and available coarse-scale data. The
likelihood of water-cut datay is given by

p(y|Ψ) ∝ exp
{
−1

2
(y− H[Ψ])T R−1 (y− H[Ψ])

︸ ︷︷ ︸
Jy

}
(8)

The probability distribution function (pdf) of the predicted ensemble,

p(Ψ) ∝ exp
{
−1

2
(Ψ−Ψ)T (Pf )−1 (Ψ−Ψ

︸ ︷︷ ︸
Jf

)
}

(9)

whereΨ andPf are the predicted ensemble mean and covariance, respectively Eqs. (4a) and (4b). Then, using Bayes
theorem, we obtain

p(Ψ|z, y) =
p(Ψ, z, y)

p(z, y)
=

p(z, y|Ψ) p(Ψ)
p(z, y)

∝ p(z, y|Ψ)p(Ψ)︸ ︷︷ ︸
(?)

=

(†)︷ ︸︸ ︷
p(z|Ψ) p(y|Ψ) p(Ψ).︸ ︷︷ ︸

∝ p(Ψ|y)

(10)

Based on the above equation, following the(?) term, all the available data (z andy) could be assimilated in one
step (details follow in Section 3.1), whereas based on the(†) term, the measured datay andz can be assimilated in a
sequential manner. First assimilate the fractional flow (y) to obtain an ensemble conditioned ony, i.e.,p(Ψ|y), which
could then be used to assimilate the coarse-scale dataz (further explained in the following Section 3.2).
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3.1 Coarse-Scale Data Assmilation: In One-Step

All the available data,y and z, could be assimilated in one assimilation step by a modification to the model-to-
observation space operator,H. If coarse-scale permeability data at a single coarse-scale is to be assimilated,H =
[U 0 0 I]. Alternatively, if coarse-scale saturation data is available,H = [0 0A I ]. The fine-scale estimated ensemble is
obtained as in Section 2.2, with Eq. (6) modified to account for the additional coarse-scale data,

Ψ̃(i) = Ψ(i) + K([z(i), y(i)]T − H[Ψ(i)]), K = Pf HT [HPf HT + R′],−1 (11)

whereR′ =
[

Q 0
0 R

]
. From now we on refer to this one-step assimilation of coarse-scale data procedure asreg EnKF.

A consequence of the particular form ofH is that it introduces contributions for cross-correlations between upscaled
variables and production data. From a computational point of view, it has been known that EnKF is not very efficient
for assimilation of large amounts of data [20], which could arise in our case, in complex three-dimensional cases,
and also if data at multiple coarse scales is to be assimilated. In such a situation, different kinds of data could be
assimilated in batches [21], which is described in the Section 3.2.

3.2 Coarse-Scale Data Assmilation: In a Sequence

We obtain an intermediate ensemble by assimilatingy, denoted by{Ψ̃(i)}Ne
i=1,

p(Ψ̃) = p(Ψ|y) ∝ exp{−(Jf + Jy)} (12)

as discussed in Section 2.2. This intermediate ensemble and likelihood in Eq. (7) can then be combined [† term in
Eq. (10)] to obtain the final estimate{Ψ̂(i)}Ne

i=1,

p(Ψ̂) = p(Ψ|z, y) ∝ exp{−(Jf + Jy + Jz)} (13)

Therefore, in a least-squared sense, the final estimate maximizes the posterior pdfp(Ψ|z, y) and corresponds to the
minimum ofJ = Jz+Jy+Jf . See Appendix A for further details (where we show that the solutionΨ̂(i) corresponds
to the minimum ofJ , for anyith ensemble member).

If coarse-scale data is available at only one coarse scale, then the fine-scale estimated ensemble is obtained by first
assimilating production data followed by assimilation of the coarse-scale data,

Ψ̃(i) = Ψ(i) + K(y(i) − H[Ψ(i)]), K = Pf HT [HPf HT + R]−1 (14a)

Ψ̂(i) = Ψ̃(i) + K̃(z(i) − U[Ψ̃(i)]), K̃ = P̃
f
UT [UP̃

f
UT + Q]−1 (14b)

P̃
f

is approximated using the intermediate ensembleΨ̃(i); henceforth we refer to this sequential, coarse-scale EnKF
data assimilation procedure ascs-EnKF. Note that data at multiple coarse scales can be sequentially assimilated by
suitable repetition of Eq. (14b), with corresponding upscaling operators. For the coarse-scale saturation data, which
may be available at only certain times, for only those assimilation cycles is Eq. (14b) applicable, whereas in the case
of permeability data, considering it to be prior information regarding the fine-scale permeability, it is always to be
honored; hence, both of the above steps (14a) and (14b) are to be always applied. The cs-EnKF algorithm is detailed
in Appendix B, and a flow chart is given in Fig. 1. Implementation of this algorithm entails upscaling of each ensemble
member at every assimilation step, i.e.,Ne times the upscaling operatorU[·] needs to be applied. In addition, if the
dimension of the coarse-scale grid isNc = nc×nc, then we need to perform an Singular Value Decomposition (SVD)
of a rectangular matrix of sizeNc ×Ne. Hence, the total computation expense involvesNe upscales and SVD of the
Nc × Ne matrix. Note that a similar upscaling is involved in the case of the reg EnKF, but the size of the matrix to
compute SVD is now(Nc + Nwc)×Ne, whereNwc is the dimension of the water-cut data. In addition, if there are a
number of coarse scales then the size of the matrix whose SVD is to be computed will grow for the reg EnKF, since
all the data is assimilated in one step. Whereas for the cs-EnKF, coarse-scale data is assimilated in a sequence, the
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Generate Initial Ensemble Members  

Predict entire ensemble up to observation time

Assimilate observed water cut data:
   step 1 of coarse−scale EnKF 
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coarse−scale

there

data?

Assimilate coarse−scale data:

   step 2 of coarse−scale EnKF 
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observations
Additional

Exit

NO

Yes

Yes

No

FIG. 1: Flowchart for assimilation of coarse-scale data using the EnKF.

estimate from one coarse scale being used as a prior for the next scale, the matrix size to compute SVD is always
Nc ×Ne. (See also remark 3 of the coarse-scale EnKF algorithm in Appendix B.)

For nonlinear upscaling operators, such asU , the final estimates from the reg EnKF would be different from those
obtained using the cs-EnKF. When both the coarse-scale and water-cut data are assimilated together as in the above
reg EnKF, it would imply fitting a multivariate normal likelihood to the different measured data together, whereas
when the different kinds of data are assimilated one after another, as in the cs-EnKF, we fit each data separately, with
a different pdf. (For further details on this topic, please see Dance [21] and references therein; also see Section 5.)

3.3 Upscaling Methods

In brief, the main idea behind upscaling of absolute fine-scale permeability is to obtain effective coarse-scale perme-
ability for each coarse-grid block.Upscaling techniques in conjunction with the upscaling of absolute permeability
have been used in groundwater applications (see, e.g., [19, 22, 23]). The link between the coarse- and the fine-scale
permeability fields is usually nontrivial, because one needs to take into account the effects of all the scales present at
the fine level. In the past simple arithmetic, harmonics, or power averages have been used to link properties at various
scales. These averages can be reasonable for low heterogeneities or for volumetric properties such as porosity. For
permeabilities, simple averaging can lead to inaccurate and misleading results. In this paper we use the flow-based
upscaling methods.

Consider the fine-scale permeability that is defined on a domain with underlying fine grid as shown in Fig. 2. On
the same plot a coarse-scale partitioning of the domain is also illustrated. To calculate the coarse-scale permeability
field at this coarse level, we need to determine it for each coarse block,Ωc. The coarse-scale permeability is computed
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Ω
c

Ω
c

φ=0φ=1

no flow

no flow

div( (x) )=0κ φ∇

FIG. 2: Schematic illustration of upscaling (not to scale). Bold lines indicate a coarse-scale partitioning, while thin
lines show a fine-scale partitioning within coarse-grid cells. In this paper we upscaled a50 × 50 fine grid to a5 × 5
coarse grid.

so that it delivers the same average response as that of the underlying fine-scale problem, locally. The calculation of
the coarse-scale permeability based on local solutions is schematically shown in Fig. 2. For each coarse domainΩc

we solve the local problems
∇ · [κf (x)∇φj ] = 0 (15)

with some coarse-scale boundary conditions. An example of such boundary conditions is given byφj = 1 andφj = 0
on the opposite sides along the directionej and no flow boundary conditions on all other sides, alternatively,φj = xj

on∂Ωc. For these boundary conditions the coarse-scale permeability (κc) is given by

κcej · el =
1
|Ωc|

∫

Ωc

κf (x)∇φj · el dx (16)

whereφj is the solution of Eq. (15) with prescribed boundary conditions. Various boundary conditions such as peri-
odic, Dirichlet, etc. can have some influence on the accuracy of the calculations. These issues have been discussed,
e.g., in [24]. In particular, for determining the coarse-scale permeability field one can choose local domains that are
larger than target coarse block,Ωc, in Eq. (15). Furthermore Eq. (16) is used in the domainΩc, whereφj are com-
puted in the larger domains with correct scaling (see [24]). This way one reduces the effects of the artificial boundary
conditions imposed onΩc (for details see [24]).

We denote byU the local operator that maps the local fine-scale permeability fieldκf onto κc, defined on the
coarse grid as in the above Eq. (16). For our computations we assume

κc = U(κf ) + ε (17)

whereε are some random fluctuations that represent inaccuracies in the coarse-scale permeability. One source of
these fluctuations is the errors associated with solving inverse problems on the coarse grid. The other source of the
inaccuracies include the fact that the inversion on the coarse grid does not take into account the adequate form of the
coarse-scale models. Indeed, the inversion on the coarse grid for flow problems often involves the same flow equations
as the underlying fine ones, for example, the same relative permeabilities are used for the coarse-scale problems as
those for the fine-scale problems or the effects of macrodispersion are neglected. It is known that the flow equations at

Volume 1, Number 1, 2011



56 Akella, Datta-Gupta, & Efendiev

the coarse level may have a different form than the underlying fine-scale equations [19, 25–27]. In general, this form
depends on the detailed nature of the heterogeneities, which are very difficult to obtain in solving inverse problems.
In our paper we use Gaussian errors in Eq. (17) and consider the impact of coarse-scale data precision (i.e., nature of
ε) by varying the variance ofε (see Section 4.2 for more details).

4. NUMERICAL RESULTS

For our numerical tests, we use a50×50 fine grid (dimensionless domain size50×50) and two kinds of coarse-scale
data in a twin experiment setup. First we consider coarse-scale permeability, which in reality, could be obtained by
coarse-scale inversion of fractional flow data on a coarse grid [9, 28]. In this study we upscaled the reference fine-
scale permeability (described below) to a5× 5 grid to obtain a coarse-scale permeability using flow based upscaling
(Section 3.3). This coarse-scale field could be thought of as static data, which is to be honored as constraint (up to the
prescribed measurement data variance) in Eq. (7); hence, we need to always assimilate it in every assimilation cycle.
In reality we never know the reference field; therefore, this experimental setting is unrealistic. However, it allows us
to compare and contrast a variety of test cases.

For the second set of results, a coarse-scale saturation is used which in practice could be obtained from inversion
of 4d seismic measurements (see Section 1). Here, the coarse-grid saturation was obtained by volume averaging
of true fine-scale saturation at some specific observation times (further details are given in Section 4.3). Therefore,
unlike coarse-scale permeability, static data constraint, which is to be always satisfied, the coarse-scale saturation
data is assumed to be available at only a few observation times. Following the flowchart in Fig. 1, we always have
coarse-scale data if it is coarse permeability, and only at those few observation times for coarse-scale saturation data.

An initial ensemble with different permeability realizations was generated using the sequential Gaussian simula-
tion (Deutsch and Journel [29]). We specified a Gaussian variogram model with a correlation length of 20 gridblocks
in thex direction and 5 gridblocks in they direction. One of the realizations is used as the “true” field (shown in Fig. 3)
and was removed from the ensemble. Porosity (φ) is assumed to be equal to 0.15 for all grid blocks. For simplicity,
relative permeabilitieskrj are assumed to be linear functions of water saturation (S): krw(S) = S, kro(S) = 1 − S.
One injection well at the center of the field (injection rate: 71.4 m3/day) and four producing wells at the four corners
(all with equal rate of 17.85 m3/day) were considered. The fine-scale model Eqs. (1)–(2b) are solved with no flow
boundary conditions, zero initial water saturation, and by discretizing the transport equation using the first-order up-
wind finite volume method. In the top panel of Fig. 4 we provide the predicted fractional flow for256 initial ensemble
members along with the true fractional flow (obtained from the true permeability field).
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FIG. 3: Natural logarithm of50× 50 “true” permeability field.
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FIG. 4: Top panel: Water-cut prediction with 256 initial ensemble members (no data assimilation); ensemble members
(cyan), ensemble mean (blue) compared with true water cut data (red). Bottom panel: Same as top panel but after
assimilating only water-cut data as described in Section 4.1.

To compare and contrast our results using coarse-scale data and different versions of EnKF, we use the follow-
ing meanL2-norm error. Since we know the true (fine- and coarse-scale) field for our synthetic problem, denoting the
true permeability field byκtrue, the error for any ensemble member is given by

e(i) = ln(κ(i))− ln(κtrue), i = 1, 2, . . . , Ne

Consider theL2 norm of the error for each member,‖e(i)‖2 =
√∑

j [e(i)
j ]

2
, by which we define the meanL2 error as

e =
1

Ne

Ne∑

i=1

‖e(i)‖2 (18)

so thate gives us an indication of thedistanceof the entire ensemble from the true solutionκtrue. Since after as-
similating any observation we updated all the ensemble members, we can monitor the variation ofe over the time of
assimilation; the success of assimilation can therefore be related to the decrease ine.

4.1 EnKF with Water Cut Data Only

We start with a presentation of results obtained with assimilation of water-cut data only. Next we discuss results with
coarse-scale data.

The water-cut data from the reference field is assumed to be available every200 days, with mean zero and standard
deviation of0.01 (thereforeR1/2 = 0.01I4, whereI4 is the unit matrix of size4 × 4, since there are four producing
wells). The observed data is assumed to be available up to2400 days; hence, we performed assimilation between200
and2400 days. A prediction beyond the interval of data assimilation, up to4000 days, is also provided.
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The choice of ensemble size (Ne) is very important for successful data assimilation using EnKF. This is because
a finite size ensemble prediction is used to estimate the prior error covariancePf Eq. (4b). For small sample sizes,
sampling errors in the covariance estimates result in insufficient variance forPf , so that observations which lie out-
side the small ensemble spread are completely ignored [17, 30]. (We are trying to sample a covariance matrix for
unknown variables:ln(κ), pr , S, Wc, i.e., an unknown of size3 × 2500 plus four fractional flow data in this case,
using sample sizes that are far lesser, resulting in severely reduced rank covariance matrices.) Different approaches
such as covariance inflation and localization have been proposed to alleviate this problem of ensembleinbreeding,
which is discussed elsewhere (see [31–34] and references therein for further details). An ensemble withsufficiently
large number of members needs to be selected so that the assimilation system would not severely suffer from the
above-described problem.2 Here we present our data assimilation results withNe = 256, and in Sections 4.2 and 4.3
we briefly discuss some important characteristics of the error covariance matrix such as variance and eigenspectrum in
the context of coarse-scale data assimilation. The issue of coarse-scale data assimilation with smaller ensemble sizes
would be tackled in the future.

In the bottom panel of Fig. 4 we plot the ensemble and true water-cut data after assimilation of only water-cut
data with the EnKF. Comparing with the initial forecast (top panel), we observe that the assimilated ensemble better
envelopes the true data. Also, the ensemble mean saturation field after 500, 1000, 2000, 3000, and4000 days of
simulation better compares with the true saturation than with no assimilation in Fig. 7. The final permeability field
after assimilation for the ensemble mean and a few members is compared with the true field in Fig. 9. Note that the
central, southeast–northwest channel is prominent, but the features at the southwest and northeast corners are not
well captured, which is reflected in the plot of mean saturation (Fig. 7), where many fine-scale features present in
the true saturation field are not present in the ensemble mean. Therefore, assimilation of only water-cut data helps in
identifying some of the important features.

4.2 EnKF with Water-Cut and Coarse-Scale Permeability Data

In addition to water-cut production data, the coarse-scale permeability data, as described in Section 3.3 was used
as additional measured data. Flow-based upscaling of the reference permeability field was used as a proxy for the
inverted coarse field. Following our previous notation, this coarse-scale permeability data is denoted byz Eq. (7).
The mapping between state variables (at fine-scale) and observations (at coarse-scale) as given byU = [U 0 0 0], U ,
denotes flow-based upscaling. For the reg EnKF,H = [U 0 0 I] in Eq. (11) of Section 3.1.

Exactly as in the previous section, we prescribed the same frequency (of availability) and precisionR for the
water-cut data. Since we use coarse-scale permeability as additional data, it is to be assimilated whenever we assimilate
water-cut data. For5×5 coarse-scale data with mean zero and variance,Q = qI25 (we present results withq = 4, 2, 1,
and0.1), so that we can consider the impact of coarse-scale data precision. In the left panel of Fig. 5 we plot the
variation of meanL2 error e Eq. (18) with observation time at the coarse scale for different values ofq and using
reg EnKF as well as cs-EnKF. In the right panel of the same figure we show the correlation between coarse-scale
ensemble mean and true fields forq = 1. The values of correlation coefficients for different values ofq are provided
in Table 1. Note that as the precision of coarse-scale data is increased, i.e., for smaller value of variance, we observe
a larger decrease in coarse-scale meanL2 error and higher correlation with true coarse-scale field. This would be
expected because smaller varianceQ implies more strict coarse-scale data constraint in Eq. (7) and hence, the coarse-
scale data is more accurately assimilated as it is made more precise. The water-cut data prediction using the final
permeability field after assimilation for different coarse-scale data precisions is plotted in Fig. 6. (The nature of results
with q = 4 is similar to those withq = 2, 1, 0.5; thus, we drop it.) Notice the improved fit of ensemble prediction to
the true data for more precise coarse-scale data and also when compared to the assimilation of only water cut in Fig. 4,
which is a consequence of the additional coarse-scale data being available. However, the water-cut prediction with the
cs-EnKF compares better with the truth than that with the reg EnKFfor higher values ofq = 2 and1; with q = 0.5,
the reg EnKF prediction is highly improved. In Fig. 7 we compare the ensemble mean with the true saturation. Once

2Our choice ofNe = 256 was based on observing the eigenspectrum and variance, discussed in Sections 4.2 and 4.3, by comparing
the results for the256 ensemble with a1000-sized ensemble; the256-sized ensemble did not suffer from the insufficient variance
problem discussed above.

International Journal for Uncertainty Quantification



Assimilation of Coarse-Scale Data Using the Ensemble Kalman Filter 59

0 200 600 1200 1800 2400
1

2

3

4

5

6

7

8

9

10

11

observation time (days)

m
e

a
n

L
2

e
rr

o
r

fo
r

c
o

a
rs

e
-s

c
a

le
p

e
rm

.

-1 0 1 2 3 4 5 6 7
-1

0

1

2

3

4

5

6

7

ln(true coarse-scale perm.)
ln

(c
o

a
rs

e
-s

c
a

le
 e

n
s
. 
m

e
a

n
)

q = 1

reg EnKF

cs-EnKF

reg EnKF, q=4

cs-EnKF, q=4

reg EnKF, q=2

cs-EnKF, q=2

reg EnKF, q=1

cs-EnKF, q=1

reg EnKF, q=0.5

cs-EnKF, q=0.5

FIG. 5: Results with coarse-scale permeability and water-cut data assimilation. Left panel: Variation of meanL2

norm error at coarse scale with assimilation time and precision of coarse-scale dataq, for both reg EnKF and cs-
EnKF. Right panel: The correlation between ensemble mean permeability with the truth at coarse scale plotted for
q = 1.

TABLE 1: Correlation coefficient between ens. mean permeabilityln(κ) and
true permeabilityln(κtrue), at coarse as well as fine scales for different pre-
cisionsq of coarse-scale permeability data. The coarse scale is denoted with
subscriptc and fine-scale withf . Results with both reg EnKF and cs-EnKF are
given. For only water-cut data assimilation,corr[ln(κf ), ln(κtrue

f )] = 0.3074.

corr[ln(κc), ln(κtrue
c )] corr[ln(κf ), ln(κtrue

f )]
q reg EnKF cs-EnKF reg EnKF cs-EnKF
4 0.9887 0.9851 0.6484 0.6341
2 0.9963 0.9934 0.6573 0.6275
1 0.9974 0.9968 0.6546 0.6356
0.5 0.9971 0.9963 0.6096 0.6292

again, as the coarse-scale data constraint is more precisely imposed, the ensemble mean saturation captures most of
the features in the true field. Also, notice that the reg EnKF saturation prediction improves more markedly asq is
lowered when compared to the cs-EnKF, which could explain the better water-cut fit in Fig. 6 forq = 0.5 with the
reg EnKF.

In the left panel of Fig. 8 we plot the fine-scale meanL2 error for the permeability field with different values
of q, and in the right panel of the same figure we plotted the correlation between the ensemble mean and the true
fine-scale permeability forq = 1. The correlation coefficients are given in Table 1. (For assimilation of only water-cut
data, we obtained a correlation coefficient equal to0.3074.) Though the meanL2 error is lower with the cs-EnKF,
a slightly higher correlation is obtained with the reg EnKF. We observe that higher precision, i.e., lowerq, does not
necessarily imply highest correlation, whereas we obtained a lower meanL2 error. The final permeability field after
assimilation for the ensemble mean and a few members is shown in Fig. 9. We note that the low-permeability region at
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FIG. 6: Same as in Fig. 4, but for assimilation of both coarse-scale permeability and water-cut data. The coarse-scale
data precision is varied,q = 2, 1, 0.5. Results withq = 4 had a trend similar to the ones plotted and hence, are not
shown.
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FIG. 7: Plot of the evolution of saturation field for the truth, ensemble mean: initial forecast (no assimilation),
assimilation of only water cut, and assimilation of both water cut and coarse-scale permeability data with various
precisions. We denote only water cut with “Wc”, and water-cut and coarse-scale permeability data with “Wc+Kc”.
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FIG. 8: Same as in Fig. 5, but for the fine scale.

the northeast and high permeability at the southwest corners are well captured. Also, the ensemble mean permeability
with the cs-EnKF has some features not very well present, in that with the reg EnKF, particularly withq = 2, 1,
e.g., the low-permeability region to the left of the central southwest–northeast channel. As we noted in Section 3.1,
the estimates obtained using the reg EnKF are expected to be different from those obtained with the cs-EnKF. We
observed that for higher values of the coarse-scale data variance (q = 2 and1), the cs-EnKF yielded better water
cut, ensemble mean saturations, and permeability estimates when compared to the reg EnKF, whereas withq = 0.5,
the results are similar (but not exactly same) with both versions of the EnKF. These results indicate that an optimal
value for the coarse-scale data variance is important, particularly for the different versions of the EnKF (reg EnKF or
cs-EnKF), and it could be obtained by a prior calculation of the uncertainty in the coarse-scale data which can be
addressed in a future study. Also, more complex, studies in coarse-scale data at more than one scale and for three-
dimensional models are needed to understand the merits and demerits of each version of the EnKF.

Regardless of the version of EnKF being used, after every assimilation cycle we can obtain an estimate of the
analysis error covariance matrix for the ensemble fine-scale permeability. Using the fine-scale assimilated permeability
fieldsκ

(i)
f we define the following ensemble mean permeability and error covariance,

κf =
1

Ne

Ne∑

i=1

κ
(i)
f (19a)
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FIG. 9: Plot of the fine-scale permeability field for the truth, ensemble mean: initial forecast (no assimilation),
assimilation of only water-cut, and assimilation of both water-cut and coarse-scale permeability data with various
precisions in the top row. For the second column onward we show selected ensemble members:50, 100, 150, and200,
respectively. We denote only water cut with “Wc”, and water-cut and coarse-scale permeability data with “Wc+Kc”.
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Pκf ,κf
≈ 1

Ne − 1

Ne∑

i=1

[κ(i)
f − κf ] [κ(i)

f − κf ]T (19b)

Minimization of variance of the covariance matrixPκf ,κf
is desired in various Kalman filtering applications [2] as it

provides a measure of uncertainity. In the top row (left panel) of Fig. 10 we plotted the normalized variance ofPκf ,κf

during assimilation with various precisions of coarse-scale data and for both reg EnKF and cs-EnKF, and also for
assimilation of only fractional flow data (we normalized using the variance from the initial ensemble). We observed
that a higher reduction in variance is obtained as coarse-scale data precision is increased, and the cs-EnKF obtains
more reduction than the reg EnKF. This trend is seen even for an ensemble of much larger size, for example, with
1000 members as shown in the bottom row (left panel) of Fig. 10.

0 200 600 1200 1800 2400
0.4

0.5

0.6

0.7

0.8

0.9

1

observation time (days)

N
o

rm
a

liz
e

d
 v

a
ri
a

n
c
e

 o
f 

P
κ

f,κ
f

N
e
 = 256

 

 

only Wc data assimilation

reg EnKF, q=4

cs−EnKF, q=4

reg EnKF, q=2

cs−EnKF, q=2

reg EnKF, q=1

cs−EnKF, q=1

reg EnKF, q=0.5

cs−EnKF, q=0.5

0 200 600 1200 1800 2400
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

observation time (days)

N
o

rm
a

liz
e

d
 v

a
ri
a

n
c
e

 o
f 

P
κ

f,κ
f

N
e
 = 1000

50 100 150 200 250
10

−2

10
−1

10
0

10
1

10
2

10
3

M
a

g
n

it
u

d
e

Eigenvalue number

Eigenvalue spectrum of P
κ

f
,κ

f

, N
e
 = 256

100 200 300 400 500 600 700 800 900 1000
10

−2

10
−1

10
0

10
1

10
2

10
3

M
a

g
n

it
u

d
e

Eigenvalue number

Eigenvalue spectrum of P
κ

f
,κ

f

, N
e
 = 1000

FIG. 10: Top row (left panel): Normalized variance of the error covariance matrix (Section 4.2) within assimilation
window (normalized with respect to variance before assimilation, using the initial ensemble), for assimilation of
only water-cut, and assimilation of both water cut and coarse-scale permeability data with various precisions. Right
panel: Eigenspectrum of the error covariance matrix for the last assimilation cycle after2400 days with256 ensemble
members. Bottom row: Same as top row but with1000 ensemble members.
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Another important property of interest, particularly for ensemble data assimilation is the eigenspectrum ofPκf ,κf
,

which is plotted in the right panels of Fig. 10; the top row represents256 ensemble members, whereas the bottom
row represents1000 members. This eigenspectrum is from the last assimilation cycle at the end of2400 days; for
other assimilation cycles, the spectrum was similar. Asmoothdistribution of eigenvalues is desired, and indeed,
we observe that, but the tails of the spectrum are steep for only water-cut data assimilation and cs-EnKF. As the
coarse-scale data precision is improved, the trailing eigenspectrum gets smoothed out, which may indicate that the
eigenvectors associated with the small eigenvalues are able to resolve some small-scale correlation features. Also,
the larger variance associated with the leading eigenvectors as obtained for only water-cut data assimilation seems
not to be the case with coarse-scale data assimilation (some of the desirable properties regarding eigenspectrum of
covariance matrices are given, e.g., by Hamill et al. [32]). We note that for an ensemble size ofNe = 1000, the spectra
are almost identical for both versions of the EnKF. In Fig. 11 we compare side-by-side the spectra withNe = 256
for the reg EnKF and cs-EnKF, with the1000 ensemble member eigenspectrum. (Since the spectra are similar for
the1000 ensemble member case, we plot and compared only with the reg EnKF.) As noted in Fig. 10, with higher
precision of coarse-scale data, the tail of the spectrum gets smoothened, but also the magnitude of trailing eigenvalues
is decreasing, which suggests that for smaller ensemble sizes there could be issues with loss of rank of the error
covariance matrix. This problem seems to be slightly more aggrevated for the cs-EnKF. When compared to the1000
member case, the leading eigenvalues seem to be slightly larger, as observed in [32]. In any case, in this study we
did not apply any covariance inflation or localization (and always used an ensemble of size256, which seems to
preserve the rank of ensemble up to about245 eigenvalues; see Fig. 11). These topics in the context of coarse-scale
data assimilation will be covered in a future study.

4.3 EnKF with Water-Cut and Coarse-Scale Saturation Data

As mentioned in the Introduction, by coarse-scale inversion of 4d-seismic data we could obtain dynamic data such as
coarse-scale pressure and saturation. In this section we attempt to assimilate such a coarse-scale saturation in a twin
experiment along with the fractional flow data using the EnKF algorithms discussed in Sections 3.2 and 3.1. To this
end, the saturation obtained by using the reference permeability is saved at three different times:200, 1200, and2400
days, which respectively correspond to the start, middle, and end of the time window of data assimilation. This saved
fine-scale saturation field is then upscaled (see Section 3.3) by volume averaging to a5 × 5 coarse-scale grid and
used as observed coarse-scale saturation data. If we denote the volume averaging by operatorA, acting on fine-scale
saturationSf , to give coarse-scale saturationSc = ASf , then the mapping between state variables at fine scale and
measured data at coarse-scale is given byU = [0 0A0]. Therefore for the reg EnKF (Section 3.1), the measured
data is related to the fine-scale variables viaH = [0 0A I ] in Eq. (11). For the cs-EnKFwe use aboveU operator to
compute the misfit:z−U[Ψ] in Eq. (14b) (i.e., steps 2.1 and 2.4 of the cs-EnKF algorithm in Appendix B). Unlike the
coarse-scale permeability data which was taken into account at every assimilation step, by construction, the coarse-
scale saturation data is available only at a few assimilation steps, in this particular case, assimilation after200, 1200,
and2400 days.

To be consistent with our previous results, the frequency (of availability) and precisionR for the water-cut data
has been kept the same. For the coarse-scale saturation data we prescribed zero mean and variance,Q = qsI25, with
qs = 0.1, 0.01, such that the precision is varied from low to high. Since the saturation ranges between 0 and 1, and
the fractional flow data is usually more accurately measured than 4d-seismic data, we pickedqs to be always larger
than the variance in fractional flow data. In the left panel of Fig. 12 we plotted the variation of meanL2 error for the
coarse-scale saturation (while assimilating) vs observation time. (For our test case, we had assumed zero initial water
saturation; therefore, the water saturation increases in time and hence, the inherent, increasing trend in this figure.)
Note that whenever the coarse-scale saturation is assimilated (200, 1200, and2400 days) the error decreases for both
values ofqs considered. The water-cut data prediction using the assimilated ensemble members is given in Fig. 13;
the fit of ensemble water-cut with the truth gets better as the coarse-scale saturation is prescibed higher precision.

We discuss the fine-scale results starting with fine-scale saturation and then the fine-scale permeability. The en-
semble mean saturation is compared to the true field at certain times in Fig. 14. By assimilating the coarse-scale
saturation data we are able to capture many of the subtle features that are present in the true saturation field, such
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FIG. 11: Comparison of the eigenspectrum of the error covariance matrix for256 and1000 ensemble members for
different precisions (q) of the coarse-scale data. As in Fig. 10, the spectrum corresponds to the last assimilation cycle.
Plot of the spectrum for cs-EnKF and reg EnKF for1000 ensemble members was very similar (bottom row of Fig. 10)
and hence, is not plotted.

as the fingers that develop off the center toward the northeast corner and sharp contrast between different levels of
saturation, throughout the entire time interval (up to4000 days) considered. Regarding the fine-scale permeability,
a comparison of the meanL2 error is shown in the right panel of Fig. 12. Note the marked reduction in error when
coarse-scale saturation data is assimilated. Also, the correlation of the ensemble mean permeability with the truth is
improved asqs is decreased, as shown in Table 2. The fine-scale permeability fields for a few ensemble members
and the mean are shown in Fig. 15. Based on the above results, we observed that unlike in the case of coarse-scale
permeability data assimilation, coarse-scale saturation data assimilation does not yield significant reduction in error
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FIG. 12: Assimilation of coarse-scale saturation and water cut. Left panel: Variation of meanL2 norm error for
coarse-scale saturation, at different precisions of coarse-scale dataqs, for both reg EnKF and cs-EnKF with coarse-
scale saturation data. Right panel: Same as in left, but for the fine-scale permeability field.

(comparing the left panel in Fig. 8 and the right panel in Fig. 12); neither are the correlations of fine-scale ensemble
mean with the truth (second column of Tables 1 and 2). The results (ensemble mean saturation and permeability) are
improved when compared to assimilation of only water-cut data, particularly withqs = 0.01, but again, not as much
improved as with coarse-scale permeability data assimilation. This could be anticipated, since the fine-scale perme-
ability is more correlated to coarse-scale permeability than to the coarse-scale saturation. Regarding the two versions
of the EnKF considered for assimilating the coarse-scale saturation data, results are very similar to each other, even
those for the variance of error covariance matrixPκf ,κf

and its eigenspectrum at the end of2400 days (Fig. 16). Note
the steepness of the trailing eigenvalues withqs = 0.1 (for both reg EnKF and cs-EnKF), which is similar to the
assimilation of only fractional flow data; however, forqs = 0.01, this undesirable effect has been smoothned out.
This is similar to the result obtained with coarse-scale permeabilty data assimilation in Fig. 10. Our observation that
both versions of EnKF performed similarly could be due to the linearity of the fine-scale to coarse-scale saturation
mappingA; however, identical results would not be possible due to the different analysis equations and sampling of
errors used in Eqs. (14b) and (11).

5. CONCLUSIONS

The EnKF is increasingly being used for subsurface characterization in various geological and groundwater applica-
tions to identify fine-scale state and parameters. Recently, dynamic data other than production data has been consid-
ered in the EnKF context [11, 12]; nevertheless, the observed data to be assimilated was assumed to be at the finest
scale. For a number of reasons, it is widely recognized that usage of additional multiscale data could further reduce the
uncertainty at the fine scale. Also, it is often important to preserve large-scale features of the permeability field. These
are coarse-scale features that can typically represent connectivity of the media. For example, facies consisting of high
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FIG. 13: Similar to Fig. 6, but assimilation of water-cut and coarse-scale saturation at different precisions. We denote
only water cut with “Wc”, and water-cut and coarse-scale saturation data with “Wc+Sc”.
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FIG. 14: Same as in Fig. 7, but for the assimilation of coarse-scale saturation and water cut.
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TABLE 2: Same as Table 1, but for assimi-
lation of coarse-scale saturation data.

corr[ln(κf ), ln(κtrue
f )]

qs reg EnKF cs-EnKF
0.1 0.2861 0.2746
0.01 0.3149 0.3280

permeable regions are important for flow and transport. On the other hand, these features alone are not sufficient
to match water-cut data. By performing inversion on the coarse grid, we can capture these large-scale features with
more accuracy and certainty, and in turn, the coarse-scale inverted permeability could be used as a prior constraint
in EnKF data assimilation of the fine-scale fields.

Here we proposed assimilation of coarse-scale data along with water-cut production data. We showed that the
modifications to the EnKF for multiscale data assimilation are completely recursive and easily implementable. The
relation between fine and coarse scales was modeled via flow-based upscaling, which could be thought of as a nonlin-
ear observation operator linking the coarse-scale data to the unknown fine-scale variables. In addition, the proposed
methodology could be used in any other sequential data assimilation method, as well to assimilate data at multiple
coarse scales. Two versions of EnKF were suggested: (i) reg EnKF, where all the data (coarse-scale and water-cut)
were assimilated together, and (ii ) cs-EnKF, where the data were assimilated sequentially in batches. Ensemble mem-
bers obtained after assimilating water-cut data are used as a prior to assimilate coarse-scale data. Though in our
current paper we used only one coarse scale, the proposed method can be easily implemented to integrate as many
coarse scales as required by the available data. Also the methodology is independent of the upscaling operator.

The assimilation setup was tested and compared for a two-dimensional synthetic50× 50 heterogenous true field.
Two kinds of coarse-scale data were considered. In the first implementation, coarse-scale permeability data was con-
sidered and in the second, coarse-scale saturation. In our twin experiment setup, both of these data were derived from
the reference field and, in both cases a5×5 coarse grid was used. The coarse-scale data variance was varied from low
to high in order to study its impact on fine-scale assimilated fields and water-cut predictions. In all cases we observed
that the assimilated, ensemble mean coarse-scale (permeability/saturation) field for all variances was highly corre-
lated to the true coarse-scale field. In addition, lower variance in the coarse-scale data yielded higher correlation. The
water-cut data was better honored, for higher precision of coarse data. When assimilating coarse-scale permeability
we observed that the cs-EnKF gave better fit with the true saturation, water-cut, and fine-scale permeability than the
reg EnKF. It also yielded less error in an averagedL2 norm error taken with regard to the reference field, whereas
both versions of EnKF performed similarly when assimilating coarse-scale saturation. As shown in Appendix A,
for a linear observation operator, assimilation of coarse-scale data in batches (i.e., as in cs-EnKF) or in shot (as in
reg EnKF) would yield the same estimate. Then the cause for the difference in the performance of the two versions
of EnKF for assimilation of coarse-scale permeability could be either due to ensemble size or linearity/nonlinearity
of the upscaling (observation) operator. This issue has been outlined by Dance [21] and references therein. As far
as the number of ensembles is concerned, we observed that even with a larger ensemble size of1000 members, we
noticed different performance of the two versions of EnKF (Fig. 10, reduction in normalized variance ofPκf ,κf

while
having similar ranks in terms of the eigenspectrum). Certainly further study with different upscaling operators and
coarse-scale data at multiple levels would be needed to study this aspect of the two versions of EnKF considered here.
Over all, inclusion of coarse-scale data replicated many of the subtle features present in the fine-scale permeability
and saturation fields which were not present after assimilating only water-cut data.

As our results indicate that the inclusion of coarse-scale data enhances identification of the multi-scale reservoir
characteristics, it is important to study methods to obtain coarse-scale data as well as its precision. In a realistic
scenario, coarse-scale inversion [7, 28], and in the future perhaps with more computing resources, MCMC methods
[8], could be used to obtain such data. The coarse-scale saturation obtained using inversion has been shown to yield
improved estimates in a three-dimensional reservoir case by Devegowda et al. [35]. Our current and future work is
directed toward obtaining coarse-scale data with higher precision and its assimilation using ensembles of smaller size
for complex three-dimensional cases.
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FIG. 15: Same as in Fig. 9, but for the assimilation of coarse-scale saturation and water cut.

Volume 1, Number 1, 2011



72 Akella, Datta-Gupta, & Efendiev

0 200 600 1200 1800 2400
1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5
x 10 4

observation time (days)

V
a
ri
a
n
c
e
 o

f 

 

 

50 100 150 200 250
10−2

10−1

100

101

102

103

104

M
a
g
n
it
u
d
e

Eigenvalue number

Eigenvalue spectrum of P
κf

only Wc data assimilation

reg EnKF, q
s
= 0.1

cs EnKF, q
s
= 0.1

reg EnKF, q
s
= 0.01

cs EnKF, q
s
= 0.01

κf

P
κ

f
κ

f

FIG. 16: Same as in Fig. 10 (top row), but for the assimilation of coarse-scale saturation and water cut.
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APPENDIX A. TWO-STEP COARSE-SCALE CONSTRAINED KALMAN FILTER ESTIMATE

From Section 3,

Jf =
1
2
(Ψ−Ψ)T (Pf )−1 (Ψ−Ψ)

and

Jy =
1
2
(y− H[Ψ])T R−1 (y− H[Ψ])

For notational simplicity we denoteµΨ asµ and denotePf by B.
Step 1(minimizeJf + Jy):

First we minimize the sum,J1 = Jf + Jy. The gradient3 of the above quadratic cost functional with respect to
(w.r.t.) Ψ is given by

∇ΨJ1 = B−1 (Ψ− µ)− HT R−1 (y− H[Ψ])

Then the minimizer̃µ of J1 satisfies (we assumeH to be linear)

B−1 (µ̃− µ)− HT R−1 (y− Hµ̃) = 0

By rearranging the above equation we get

[B−1 + HT R−1H]µ̃ = B−1µ + HT R−1y (20)

Note that the Hessian ofJ1 w.r.t.Ψ is given byB−1+HT R−1H, and for linear quadratic cost functionals, the Hessian
inverse is equal to the error covariance matrix. Therefore, the error covariance matrixB̃ for µ̃ is given by

B̃ = [B−1 + HT R−1H]−1 (21)

Step 2(minimizeJg + Jz):
We useµ̃, B̃ in

Jg =
1
2
(Ψ− µ̃)T (B̃)−1 (Ψ− µ̃)

Jz =
1
2
(z− U[Ψ])T Q−1 (z− U[Ψ])

Therefore, the minimum̂µ of Jg + Jz satisfies

[(B̃)−1 + UT Q−1U]µ̂ = (B̃)−1µ̃ + UT Q−1z.

Using Eqs. (21) and (20) we can rewrite the above as

[B−1 + HT R−1H︸ ︷︷ ︸
(B̃)−1

+UT Q−1U]µ̂ = B−1µ + HT R−1y︸ ︷︷ ︸
r.h.s. of Eq. (20)

+UT Q−1z

It is trivial to show that̂µ also satisfies

∇Ψ[Jf + Jy + Jz] = 0

Therefore, the two-step method to obtain the final estimateµ̂ gives the same results as a one-shot approach of mini-
mizingJf + Jy + Jz.

3We note in passing thatB andR are covariance matrices and are positive definite by construction and hence, for our derivation
purposes, are formally invertible.
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APPENDIX B. THE COARSE-SCALE EnKF ALGORITHM

Algorithm 1. Coarse-scale EnKF algorithm

Run the simulation model up to a particular observation time for the entire ensemble to get predicted samples:
{Ψ(i)}Ne

i=1, A =
(
Ψ(1),Ψ(2), . . . ,Ψ(Ne)

)
.

• Step 1: Using measured water-cut datay with varianceR, get the updated ensemble:
{
Ψ̃(i)

}Ne

i=1
.

Step 1.1—Find ensemble mean [Eq. (4a)]Ψ.

Step 1.2—Subtract deviation from the meanA′ =
(

b(1), b(2), . . . , b(Ne)
)

, b(i) = Ψ(i) −Ψ.

Step 1.3—ApplyH to each column ofA′ to getS = H A ′, i.e., simply pick the water-cut deviations inA′.

Step 1.4—For i = 1, 2, . . . , Ne,

sampleν(i) i.i.d.∼ N (0, R).
y(i) = y + ν(i),

R1/2 =
(
ν(1), ν(2), . . . , ν(Ne)

)
,

D =
(

d(1), d(2), . . . , d(Ne)
)

,

d(i) = y(i) −W(i)
c ; W(i)

c is predicted water cut for each ensemble member.
End for

Step 1.5—Compute SVD
[
S+ R1/2

]
= XLΣXR.

GetΣ̂ retaining the first few singular values which explain most variability inΣ, corresponding

to the left singular vectors:̂XL.

Step 1.6—Update ensemble: Eq. (6),Ã =
(
Ψ̃(1), Ψ̃(2), . . . , Ψ̃(Ne)

)
,

Ã = A + A′ST X̂LΣ̂−2X̂
T

L D.

• Step 2: Using coarse-scale dataz with varianceQ, get the updated ensemble:
{
Ψ̂(i)

}Ne

i=1
.

Step 2.1—Compute coarse-scale ensemble prediction:u(i) = UΨ̃(i), i = 1, 2, . . . , Ne.

Step 2.2—Coarse-scale mean:µ′ =
1

Ne

Ne∑

i=1

u(i).

Step 2.3—Coarse-scale deviations:S′ =
(
s(1), s(2), . . . , s(Ne)

)
, s(i) = u(i) − µ′.

Step 2.4—Repeat step 1.4 using coarse-scale measurement.For i = 1, 2, . . . , Ne,

sampleω(i) i.i.d.∼ N (0, Q).
z(i) = z + ω(i),

Q1/2 =
(
ω(1), ω(2), . . . , ω(Ne)

)
,

D′ =
(

d(1), d(2), . . . , d(Ne)
)

, d(i) = z(i) − u(i).

End for

Step 2.5—Compute SVD[S′ + Q1/2] = XLΣXR. GetΣ̂ andX̂L as in step 1.5.

Step 2.6—Compute fine-scale mean:µ =
1

Ne

Ne∑

i=1

Ψ̃(i).

Step 2.7—Compute fine-scale deviations:A′′ =
(

b(1), b(2), . . . , b(Ne)
)

, b(i) = Ψ̃(i) − µ.
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Step 2.8—Update ensemble:Â =
(
Ψ̂(1), Ψ̂(2), . . . , Ψ̂(Ne)

)
,

Â = Ã + (A′′)(S′)T X̂LΣ̂−2X̂
T

L D′.

Remark 1:
Note that steps 2.6 and 2.7 in the above algorithm approximate the intermediate fine-scale error covariance,

P̃f ≈ 1
Ne − 1

A′′ (A′′)T .

Remark 2:
Steps 2.1–2.3 accomplish4

S′ = UA′′.

Note that the above algorithm is independent of the choice of upscaling procedure, and we can use the same algorithm
for different kinds of coarse-scale observed data (if available).
Remark 3:
Note that the above coarse-scale constrained EnKF algorithm can be readily extended to incorporate data at multiple
coarse scales with the appropriate upscaling procedure inU. To elaborate, if we had other independent data at a scale

different fromz, we could use the estimates
(
{Ψ̂(i)}Ne

i=1

)
obtained usingz. As an intermediate solution, repeating

step 2 to assimilate the data at another scale.

4As noted in [2], this approach of accounting for the nonlinear observations operatorU works well as long asU is weakly nonlinear
and a monotonic function of model variablesΨ.
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