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An efficient low-order virtual element method (VEM) for the phase-field modeling of ductile fracture is outlined within
this work. The recently developed VEM is a competitive discretization scheme for meshes with highly irregular shaped
elements. The phase-field approach is a very powerful technique to simulate complex crack phenomena in multi-physical
environments. The formulation in this contribution is based on a minimization of a pseudo-potential density functional
for the coupled problem undergoing large strains. The main aspect of development is the extension toward the virtual
element formulation due to its flexibility in dealing with complex shapes and arbitrary number of nodes. Two numerical
examples illustrate the efficiency, accuracy, and convergence properties of the proposed method.
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1. INTRODUCTION

The virtual element method (VEM) has been developed over the last decade and applied to various problems in solid
mechanics. Itis a generalization of the finite element method (FEM) (Bathe, 1996; Wriggers, 2008; Zienkiewicz et al.,
2005), which has been inspired from modern mimetic finite difference schemes in Brezzi et al. (2009). VEM allows
exploration of features such as flexibility with regard to mesh generation and choice of element shapes, e.g., the use
of very general polygonal and polyhedral meshes. In this regard, a stabilization procedure is required in the virtual
element method, as described in Cangiani et al. (2015) for linear Poisson problems. Up until now, applications of
virtual elements have been devoted to linear elastic deformations in Artioli et al. (2017) and Gain et al. (2014), contact
problems in Wriggers et al. (2016), finite elasto-plastic deformations in Hudobivnik et al. (2019) and Wriggers and
Hudobivnik (2017), anisotropic materials at finite strains in Wriggers et al. (2018a,b), small strain isotropic damage in
Bellis et al. (2018), inelastic solids in Taylor and Artioli (2018) and hyperelastic materials at finite deformations in Chi
etal. (2017) and Wriggers et al. (2017). Recently, Aldakheel et al. (2018a) propose an efficient virtual element scheme
for the phase-field modeling of brittle fracture at small strains. This paper extends VEM towards finite deformations
ductile fracture using the phase-field approach.

The development of a virtual element methodology for solving fracture-mechanics problems numerically in-
cludes a projection step and a stabilization step. In the projection step, the deformatignamdphe fracture phase-
field d which appear in the pseudo-potential density functional are replaced by their projegticamd dr; onto a
polynomial space. This results in a rank-deficient structure; therefore, it is necessary to add a stabilization term to the
formulation (Beifio Da Veiga et al., 2013a,b; Chi et al., 2017), where in the latter the scalar stabilization parameter of
the linear case was replaced by one that depends on the fourth-order elasticity tensor. A new stabilization technique
for VEM was recently developed in Wriggers et al. (2017) who use a technique that was first described in Nadler and
Rubin (2003), generalized in Boerner et al. (2007), and simplified in Krysl (2015a) in the context of hexahedral finite
elements. The essence of the method is the addition of the pseudo-energy density fdhctign;, drr, Vdr, h)
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to a density functioﬁ//V\(V(p, d, Vd, h) which is evaluated using full quadrature. For consistency the subtraction of
aterm invoIvingI//V\(V(pn, drr, Vdrr, h) as a function of the projected deformation map and the crack phase field is
made. Heréx is the history field array for the plastic strain measures and the crack driving force. This history array
is locally evaluated only once at the element level and used in all parts of the pseudo-energy density function.

In the presented work, we examine the efficiency of VEM for predicting ductile failure mechanisms in solids
due to crack initiation and propagation. The modeling of crack formation can be achieved in a convenient way by
continuum phase-field approaches to fracture, which are based on the regularization of sharp crack discontinuities.
Phase-field modeling of fracture has been attracting considerable attention in recent years due to its capability of
capturing complex crack patterns in various problems in solid mechanics. Many efforts have been focused on the
regularized modeling of Griffith-type brittle fracture in elastic solids. In this regard, Miehe et al. (2010) proposed
a phase-field approach to fracture with a local irreversibility constraint on the crack phase-field. It incorporates
regularized crack surface density functions as central constitutive objects, which is motivated in a descriptive for-
mat based on geometric considerations. Recent works on brittle fracture have been devoted to the dynamic case
in Borden et al. (2012), cohesive fracture in Verhoosel and de Borst (2013), multiplicative decomposition of the
deformation gradient into compressive-tensile parts in Hesch and Weinberg (2014), different choices of degrada-
tion functions in Kuhn et al. (2015), coupled thermo-mechanical and multi-physics problems at large strains in
Dittmann et al. (2019) and Miehe et al. (2015b), to model fracture of arterial walls with an emphasis on aortic
tissues in Gltekin et al. (2016), finite-deformation contact problems in Hesch et al. (2016), emphasis on a possi-
ble formula for the length scale estimation in Zhang et al. (2017), anisotropic material behavior at small and large
deformations in Bleyer and Alessi (2018) and Teichtmeister et al. (2017), for the description of hydraulic fractur-
ing in Ehlers and Luo (2017) and Heider and Markert (2017), to describe fatigue effects for brittle materials in
Alessi et al. (2018b), to the modeling of fracture in polymeric hydrogelsdgeB et al. (2017), for enhanced as-
sumed strain shells at large deformations in Reinoso et al. (2017), and the virtual element method in Aldakheel et al.
(2018a).

Extensions of these models toward the phase-field modeling of ductile fracture can be achieved by coupling of
gradient damage mechanics with models of elasto-plasticity. In this regard, Duda et al. (2014) investigate a setting of
brittle fracture in elastic-plastic solids. In Miehe et al. (2015a), the modeling of dynamic fracture in the logarithmic
Lagrangian strain space has been presented with emphasis on the brittle to ductile transition in thermo-elastic-plastic
solids. The model suggested in Ambati et al. (2015) uses a characteristic degradation function that couples damage
to plasticity in a multiplicative format. Borden et al. (2016) proposes a mechanism for including a measure of stress
triaxiality as a driving force for crack initiation and propagation. The coupling of gradient plasticity with gradient
damage at finite strains is considered in Aldakheel (2016), Aldakheel et al. (2014), Dittmann et al. (2017, 2018a),
and Miehe et al. (2016a,b,c, 2017) based on a rigorous variational principle. In Alessi et al. (2018a) a comparative
study between different phase-field models of fracture coupled with plasticity is outlined. A coupled phase-field
and plasticity modeling of geological materials is recently proposed by Aldakheel et al. (2017) and Choo and Sun
(2018). Recently, Aldakheel et al. (2018b) extend the phase-field modeling of fracture toward porous finite plasticity
to account for complex phenomena at the micro-scale, such as nucleation, growth, and coalescence of micro-voids,
as well as the final rupture at the macro-scale.

A minimization of a pseudo-potential density functional for the phase-field modeling of ductile fracture is pre-
sented as a key goal of this work by using an efficient virtual element method. It is based on the definition of a
pseudo-energy density per unit volume, that contains the sum of a degrading elastic-plastic part and a contribution
due to fracture, in line with Aldakheel (2016) and Miehe et al. (2015a, 2016a). On the computational side, a robust and
efficient monolithic scheme is employed in the numerical implementation to compute the unknowns (the deformation
map and the crack phase-field) using the softwareAa®FEM (Korelc and Wriggers, 2016).

The paper is organized as follows: Section 2 outlines the governing equations for the phase-field approach to duc-
tile fracture in elastic-plastic solids undergoing large deformations. The development of the virtual element method
is formulated in Section 3. Finally, Section 4 presents numerical results that demonstrate the modeling capabilities of
the proposed approach. The formulation performs extremely well in benchmark tests involving regular, distorted, and
Voronoi meshes. For purpose of comparison, results of the standard finite element method (FEM) are also demon-
strated.
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2. GOVERNING EQUATIONS FOR PHASE-FIELD DUCTILE FRACTURE

This section outlines a theory of fracture in elastic-plastic solids at large deformations. It is based on a minimization
of a pseudo-potential energy for the coupled problem. To this end) let R® with & = 2,3 be the reference
configuration of a solid domain. The response of fracturing solid at material p&irgs(2 and timet € 7 = [0, T

is described by the deformation mau§ X, t) and the crack phase-fiel{ X , ¢) as

QxT —[0,1]

OxT — RS . .
@~{ x X)X,y Wi d=0 @)

(X, t)y—xz=09(X,t)=X +u(X,t) and d;{

wherex is the position of a material point in the deformed configuration af&X , ¢) is the displacement field.

The crack phase-field(X,t) = 0 andd(X,t) = 1 refer to the unbroken and fully broken state of the material
respectively, as visualized in Fig. 1. The material deformation gradient is definBd:byV ¢.(X) = Gradp with

the Jacobiaw/ :=def{F| > 0. The solid is loaded by prescribed deformations and external traction on the boundary,
defined by time-dependent Dirichlet- and Neumann conditions

@ =@(X,t)ondd, and PN =t(X,t)onosy, 2

wherelV is the outward unit normal vector on the surfdtfeé = 02, U 02, of the undeformed configuration. The
first Piola-Kirchoff stress tensdP is the thermodynamic dual tB. In finite strain plasticity, the deformation gradient
is multiplicatively decomposed into an elastic and a plastic part as

F=F.F, wth J=J.J,=J.=defF.| and J,=def{F,| =1, 3

where the constraint of plastic incompressibility holds for the case of von Mispfasticity. The elastic part of the
right Cauchy-Green tens@ = FT F can be computed as

C=F]F/F.F,=F/C.F, yelds C.=F,;"CF;". (4)
Furthermore, the elastic left Cauchy-Green tertgds defined as
b.=F.F/ = FC,'F" with C,=F,]F, (5)

whereC,, is the plastic part of the right Cauchy-Green tensor. To account for phenomenological hardening/softening
response, we define the equivalent plastic strain variable by the evolution equation

&= with &>0 (6)

PN=t on d(,

1.0

0.0

@w=poni,

FIG. 1: Solid with a regularized crack and boundary conditions
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as a local internal variable, whefe> 0 is the plastic Lagrange multiplier. The hardening variable starts to evolve
from the initial conditiono( X, 0) = 0.
The solid2 has to satisfy the equation of equilibrium as

o7 -0] o

where dynamic effects are neglected ghis the given body force.
For the phase-field problem, a sharp-crack surface topdlogyI; is regularized by the crack surface functional
as outlined in Miehe et al. (2010, 2015a)

. 1 l
Ii(d) = / vi(d,Vd)dV with v,(d,Vd) = 27d2 + E\Vd\z, (8)
Q
based on the crack surface density functjgrper unit volume of the solid and the fracture length scale parareter
that governs the regularization, as plotted in Fig. 1. To describe a purely geometric approach to phase-field fracture,
the regularized crack phase-fields obtained by a minimization principle of diffusive crack topology

d= Arg{ir(}f Ii(d)} with d=1onT CQ, 9

yielding the Euler equatiod — I?’Ad = 0 in Q along with the Neumann-type boundary conditioid - N = 0
on 0f). Figure 2 demonstrates a numerical solution for Eq. (9) in two-dimensional setting using an efficient virtual
element method (VEM). ThE;(d) limit of the above variational principle gives for— 0 the sharp crack surfadg
as depicted in Fig. 2(f) for th€E-shape specimen with a Voronoi mesh. Evolution of the regularized crack surface

Crack phase-field d

0 0.25 0.5 0.75 1

FIG. 2: A purely geometric approach to phase-field fracture based on virtual element method (VEM). (a) Geometry and dis-
cretization of the specimen usiMpronoi meshegb)—(f) Solutions of the variational problem (9) for a circular specifianith

a givenVE shape for the sharp craék prescribed by the Dirichlet conditiah= 1 onT" C € for different fracture length scales
>0 >0t >0 > 07
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functional (8) can be driven by the constitutive functions as outlined in Aldakheel et al. (2018b) and Miehe et al.
(2015a), postulating a global evolution equation of regularized crack surface as

irl(d) =

. 1 .
= = [ sqvi(d,Vd)ddV = = / [(1—d)H —nysd]ddV >0, (10)
Q Q

l
wheren; > 0is a material parameter that characterizes the artificial/numerical viscosity of the crack propagation.
The crack driving force

H = max D(X,s) >0, (11)

s€0,t]

is introduced as bocal history variablethat accounts for the irreversibility of the phase-field evolution by filtering out
a maximum value of what is known as the crack driving state fundflomhen the evolution statement (10) provides
the local equation for the evolution of the crack phase field in the dofaailong with its homogeneous Neumann
boundary condition as

ngd=(1-dH —[d—1?Ad] with Vd-N=0 on Q| (12)

The above-introduced variables will characterize the ductile failure response of a solid, based on the two global
primary fields
Global Primary Fields L := {¢,d}, (13)
the deformation mag, and the crack phase-field The constitutive approach to the phase-field modeling of ductile

fracture focuses on the set
Constitutive State Variables€ := {b., «, H,d, Vd}, (14)

reflecting a combination of elasto-plasticity with a first-order gradient damage modeling. It is based on the definition
of a pseudo-energy density per unit volume contains the sum

| W(€) = Wetas(be, ) + Wyias (&, d) + Wyrae(H, d, V)| (15)

of a degrading elastiV;,, and plastic energied’,;,. and a contribution due to fractui®,.., which contains the
accumulated dissipative energy in line with Aldakheel (2016) and Miehe et al. (2016a). The elastic contribution is the
neo-Hookean strain energy function for a homogeneous compressible isotropic elastic material

. K _
Welas(b67d) = g(d) [wvol(be)_‘_wiso(be)} with lbvol = 2(13_1_111[3) and lpiso = %(13 1/311_3); (16)
in terms of the bulk modulug > 0, the shear modulug > 0, and the invariants/; = trb. and /3 = det b.. The

plastic contribution is assumed to have the form

Wtas(a,d) = g(d) Pp(a) with P, = Yo o + %oc2 + (Yoo — Yo) (o + exp[—8a]/5), a7

with the initial yield stressp, infinite yield stressY,, > Yj, the isotropic hardening modulug > 0O, and the
saturation parameteér

The degradation function(d) = (1 — d)?> models the degradation of the elastic-plastic energy of the solid due
to fracture. It interpolates between the unbroken responsé#$o0 and the fully broken state @t = 1 by satisfying
the constraintg(0) = 1, g(1) =0, ¢’(d) < 0, andg’(1) = 0.

In order to enforce a crack evolution only in tension, tieumetricelastic energy is additively decomposed into
a positive part)p"  due to tension and a negative parf , due to compression, outlined in the pioneering work of

vol

Amor et al. (2009) as
K

4(13i —1-InIy), (18)

Welas(bead) = g(d) [lb:ol(be) + l])iSO(be)} +1\b;ol(b€) Wlth lpfol =
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in terms of the positivd;” and the negativé; third invariant defined as

IF = max{l3,1} = (I3~ 1), + 1= % {(13 — 1)+ |I3— 1” +1

13_ = min{lg, 1} = <13 - 1>_ + 1= %[(13 - 1) - |13 - 1” + 17

19)
as visualized in Fig. 3. Following the Coleman-Noll procedure, the Kirchhoff stresses teaswt the first Piola-
Kirchoff stress tensoP are obtained from the elastic strain energy functih,s(b., d) in Eq. (18) for isotropic
material behavior as

T =2b, Wetas  and P — <F-T, (20)
b,
The fracture part of pseudo-energy density (15) takes the form
) o ll)c nyg 2
Wirae(H,d, Vd) = 27 Lyi(d,Vd) + Z—At(d —dn)°+g(d) H, (21)

whereAt := t — ¢, > 0 denotes the time stegy. > 0 s a critical fracture energy, anticontrols the post-critical
range after crack initialization. Following the recent works of Aldakheel (2016) and Miehe et al. (2016a,b), the history
field H is defined by

H:= m[%x] D(be,x;8) >0 with D := < jol + Piso +Up — 1])c> (22)
s€|0,t +

with the Macaulay bracketr) ;. := (x + |z|)/2, that ensures the irreversibility of the crack evolution.

The finite elasto-plastic model requires additionally the formulation of a yield function, a hardening law, and an
evolution equation for the plastic variables. The yield function restricts the elastic region. By assirpiagticity
with nonlinear isotropic hardening, the yield function has the form

X=+3/2|f°| -7 with fP:=deVt]=1— %tr[ﬂr]l and r? := 0xWpias, (23)

in terms of the deviatoric plastic driving forg&” and the resistance foreé€. With the yield function at hand, we
define the dual dissipation function for visco-plasticity according to Perzyna-type model as

(24)

w(f7.7) = 5oV I = o7)

I3

H i i
0 1 3 0 1

a) b)

I3

FIG. 3: Third invariant decomposition. (a) Positive part defined@s:: max{I3,1} and (b) negative part defined &§ :=
min{7s, 1}.
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with n,, being the viscosity parameter of the rate-dependent plastic deformation. The evolution equations for the
plastic variables are (Hackl, 1997; Simo and Miehe, 1992; Wriggers, 2008; Wriggers and Hudobivnik, 2017)

1 } . 195% . 1
whereL, denotes the Lie derivative in time. The evolution equation28j be recast with Eq. (5) in an alternative
form

C,'=-2yF'nFC,* (26)

which will be used later for the algorithmic treatment of plasticity within the numerical solution algorithm (Korelc
and Stupkiewicz, 2014). The Kuhn-Tucker conditions for the elasto-plastic model are

X<0, ¥>0, and xy=0 27)

The development of the virtual element formulation for the phase-field ductile fracture in elastic-plastic solids
can start from a pseudo-potential density functional instead of using the weak form. This has advantages when the
code is automatically generated using the softwareA@®GEN (Korelc and Wriggers, 2016). The pseudo-potential
density functional depends on the elastic and the fracture partkesapdthe plastic history variables and the crack
driving forceconstantduring the first variation. The pseudo-potential density functional can then be written as

mezéwmammw@)MhmM@;Lmeﬁ&imm. (28)

Hereh := {C;l, o, H} is the history field array for the plastic strain measures and the crack driving force.

3. FORMULATION OF THE VIRTUAL ELEMENT METHOD

Following the work of Brezzi et al. (2009), the main idea of the virtual element method is a Galerkin projection of the
unknowns onto a specific ansatz space. The dofagmpartitioned into non-overlapping polygonal elements which
need not to be convex and can have any arbitrary shape with different node numbers, as plotted in Fig. 4 representing

Xy, k-

~ 3
\'I»—,_

X 7_77_7_""""*-7—7_4! X,
FIG. 4: Polynomial basis function for the virtual element ansatz with vertiXgs
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a horse-likeelement with X ; vertices. Here a low-order approach is adopted (Wriggers and Hudobivnik, 2017;
Wriggers et al., 2017), using linear ansatz functions where nodes are placed only at the vertices of the polygonal
elements. Furthermore, the restriction of the element shape functions to the element boundaries are linear functions.

3.1 Ansatz Functions for VEM

The VEM relies on the split of the ansatz space into a paftrepresenting the projected primary field defined in
Eqg. (13) and a remainder

S0 =l (-l with U= {eh, dib} . (29)

The projectionst? is defined at element level by a linear ansatz funchanas

Prix a1 a4 ay 1
Lliﬁ = |ony| =a-Npg= |ax as ag| | X[, (30)
dm az ag ag| |Y

with the unknownsz. The projections!’, is now defined such that it satisfies
/ VUL AV = / Gradl" av, (31)
Q. Q.

which yields, with the linear ansatz in Eq. (30) tRatt}; is constant as

1

e JOoQ,

, 1
VLS|, = o /Q Grady”" dv = U@ N dA, (32)

where N is the normal at the boundaff2. of the domainf, of a virtual element, see Fig. 5. Thus labél|,
represents element quantities that have constant value within an elenfewtirect computation of the projected
gradient yields with the linear ansatz in Eq. (30) the simple matrix form

; Vonx Prx,x Puxy as ay
Vﬂﬁ’e = |Vony | = Pry,x @Puy,y | = |a5 asg|. (33)
Vdn dn7X dn,y as Qg

Ly

1 (2
FIG. 5: Virtual element withny- nodes and local boundary segment of the horse-like polygonal element
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The boundary integral in Eq. (32) has to be evaluated. To this end, a linear ansatz for the primary fields along the
element edges is introduced as

(M) = (1= &) Uy + & Mo = M1 83 + Mo 8, with & € [0, 1], (34)

for a boundary segmerit of the virtual element. The local nodds=[1 are chosen in counter-clockwise order and
can be found in Fig. 5. In Eq. (34)/}; is the ansatz function along a segméntelated to nodél, & is the local
dimensionless coordinate, anfh is the nodal value at that node. The ansatz funclifyy is defined in the same
way. From Egs. (32)—(34), the unknows-ag can be computed from the normal vectors of the boundary segments
in elements and the nodal primary fields as

as ay 1 1 ny (pX(X)NX (pX(X)
as ag ZQ—/)J’L@N dA:Q—Z/ oy (X)Nx oy (X)Ny | dA, (35)
ag ag o0, “ k=10, | d(X)Nx d(X)Ny

where we have usel¥ = { Nx , Ny }T andil = { ¢ x , ¢y, d }T, furthermoreny is the number of element vertices
which coincides with the number of segments (edges) of the element, for first-order VEM. Note that the normal vector
NN changes from segment to segment. In the 2D case it can be computed for a Segent

Nx 1 (vi-Y
N. = = 36
g {NY}k Ly {XZ_Xl}k:7 (39)

with {X;,Y;},=12 being the local coordinates of the two vertices of the segrheiThe integral in Eq. (35) can
be evaluated for the ansatz functions (34) exactly by using the trapezoidal or Gauss-Lobatto rule. By selecting the
vertices as the Gauss-Lobatto points it is sufficient to know only the nodal values

ue = {L(]n u27 A 7u’nv} (37)

at theny verticesV in Fig. 5. Since the ansatz function in Eq. (34) fulfills the propédy(X ;) = 6;;, the actual

form of the functionM does not enter the evaluation of the boundary integrals, which makes the evaluation extremely
simple. Finally, by comparing (33) and (35) the unknowiggo ag are obtained by inspection, for further details
(Wriggers et al., 2017). The projection in Eq. (32) does not determine the attéatm Eq. (30) completely and

has to be supplemented by a further condition to obtain the constants, andas. For this purpose we adopt the
condition that the sum of the nodal valuesif and of its projectiortt; are equal. This yields for each elemént

- Z U (X)) = Z (X)), (38)

where X are the coordinates of the nodal poinand the sum includes all boundary nodes. Substituting (30) and
(34) in Eq. (38), results with the three unknowns a,, andasz as

ay 1 ™ nv | Ox1— 9onx.x X1 — @nxy Y1
az| = —— Z [ — Vi, - Xy = o Z Oy — Qny,x X1 — @ny,y Y1 |- (39)
as V= V= dr —dn x Xr—duny Y1

Thus, the ansatz functiott}; of the virtual element is completely defined.

3.2 Construction of the Virtual Element

The VEM relies on the projectiogt’, of the deformation map and fracture phase field. This was approximated in the
last section by a first-order polynomial leading to a gradient which has a constant value. This is called the consistency
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term, but it does not lead to a stable formulation once the number of vertices is great8r Thas the formulation

has to be stabilized like the classical one-point integrated elements developed by Belytschko and Bindeman (1991),
Flanagan and Belytschko (1981), Korelc et al. (2010), Krysl (2015b), Mueller-Hoeppe et al. (2009), Reese et al.
(1999), and Reese and Wriggers (2000).

In the following development of the virtual element for the phase-field modeling of ductile fracture, the plastic
variables and the crack driving force are computed from the consistency term. These variables are then used as given
and fixed history values in the stabilization procedure.

To this end, the potential density functional defined in Eq. (28) can be rewritten by exploiting the splitin Eq. (29).
Thus we have, by summing up all element contributions fomtheirtual elements

— Al(st, b)) with TI(8t,,h,) = [[T(40, h)|, + Map(8" — 105, 0)|, ]|, (40)
e=1

based on a constant pdit. and an associated stabilization tefiy,,;,. Here the history fields arraly. are local
variables evaluateghly onceat the element level and used in both parts of the potential density functional. A summary
of the algorithmic treatment for the finite strain plasticity and the crack driving force is outlined in Box 1, for further
details we refer to the work of Wriggers and Hudobivnik (2017). The first part in Eq, ¢40) be computed as

17 (sh, h) | = W (€hyav — | f-eladv— t-oiidA with & = {bly, o H,dy, Vdp}. (41)
Qe 0N

The projected elastic left Cauchy-Green tenlpy, can be computed from the projected deformation map and
the plastic part of the right Cauchy-Green tensor as

by = FLC, 'Rl with FY; = Vel (42)

The primary fieldstt?; are linear functions and their gradiewitil?; is constant over the area of the virtual element
Q., as a consequence, the pseudo-energy density per unit vélumsentegrated by evaluating the function at the
element centroidX, as shown in Fig. 5 and multiplying it with domain sige analogous to the standard Gauss
integration scheme in FEM

Box 1: Algorithmic treatment of the history field array for the plastic strain measures and the crack driving force
Given: F, dp, Cpnl, o, Ha, Find:C, %, «, H
bl = Fyf Cp_nl Fn
Welas(bgl‘[a dH) = g(dn) [lpvol(b}eLH) + 11)180( el'[)] + q)vol(bgl_[)
Whias(e, dir) = g(dm) by (o)
aWPlas
fPi=deVr] with T=2b"} Dh
=0 Wplas(O( dr[)

fp P) F‘fp‘_rp

,—1 / 'fp Y
Cpl FIZ[ exp |:_2(OC_OCn) 3/2|‘fp|:| FIZ[C 1
x =, + Ay
At
Ay =22y =0
Y np<X(f 7“)>+_

H:= maXD(b’ELH, x) >0 with D:= < vor T Wiso +Wp — 1|)g>
+
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/ W(eq)dV = W(eg)|, Q. (43)
Qe

where the labdl]|.. refers to quantities evaluated at the element centkgidThe pseudo potential is still a non-linear
function with respect to the deformation map and the crack phase-field nodal degrees of freedom and the history field
array.

Next, the stabilization potential has to be derived for the coupled problem based on the potential (28). Following
the recent work of Wriggers et al. (2017), we introduce a non-linear stabilization procedure that takes the form

g (A" — 4y, h)| = (4", h)| — TI(fy, )| (44)
For the stabilization density functiol’, we propose a similar function to the original density function (28),
however scaled by a constant val@eas: W = BW. In Eq. (44), the stabilization with respect to the projected
primary fieldsﬁT(uﬁ, h)‘ can then be calculated as Eq. (43), yielding

(4, h)| =B W(eh)|, Q. (45)

whereas the potentidT[(u"', h)‘ is computed by applying standard finite element method (FEM) procedure, i.e.,

by first discretizing the virtual element domdin into internal triangle element mesh consistingwef = ng — 2
triangles as plotted in Fig. 6 for tHeorse-likepolygonal element. Then the integral o¥&r is transformed into the
sum of integrals over triangles. By using a linear ansatz for the primary fi€lds approximation can be computed
for the constitutive variableg€ within each triangle?, of the inscribed mesh (Wriggers et al., 2017). This gives

m

(4", h)

(46)

C7

_ 17 ( sh _ h _ S i h
e—/QSW(Q )dV—B/QeW(Q )dV_BZ:QeW(C)

where W(Q:h)\C is the potential density function evaluated at the triangle centAgicand Q¢ is the area of théth
triangle in the elemert, as plotted in Fig. 6.

To compute the stabilization paramefiera connection to the bending problem was imposed regarding the bulk
energy as outlined in Wriggers and Hudobivnik (2017). By limiting the element(izesward 0, the difference
between the potentials of projected valligsd};, h) and the true valueH (4", h) will also approach toward 0, thus
stabilization will disappear in limit. Due to the finer mesh requirements of the fracture phase-field problem compared

FIG. 6: Internal triangular mesh of the horse-like polygonal element
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with Wriggers and Hudobivnik (2017), the choicefactor term is less relevant, since it is only relevant for coarse
meshes. In this regard we propose a constant valug faken from the interval:

0O<p<il (47)

Note that forp approaching zero, the potenti (", h) in Eqg. (40) will depend only on the projection part
I1.(4%, h), leading to rank deficiency. However, wh@n= 1 the FEM results related to the internal mesh will
be reproduced. Following our previous work on VEM for phase-field brittle fracture Aldakheel et al. (2018a), we
chose a value for the stabilization paramedefractureas3 = 0.4 in all the simulations in Section 4, in which
VEM coincide with FEM results. In case ofpaure elastic-plastic stat¢he stabilization parameter follows the same
procedure introduced in our previous works Aldakheel et al. (2019) and Hudobivnik et al. (2019) and takes the form

B = min {0.4, ‘;Vf } (48)

whereoy; = /3/2 |fP] is the von Mises stresgy is the Young’s modulus, and is the equivalent plastic strain
providing an approximation for the tangent of the hardening curve.
All further derivations leading to the residual vecy, and the tangent matri&’, of the virtual element were

performed with the software todlCEGEN. This yields for Eq. (40) along with the potentials (41) and (44)—(46) the

following:

R O0Woh) o OR,

o0l oM.’

where the history variables are treated as fixed fields in Eq1,(#8), s h. = 0. With these expressions at hand,
we adopt a global Newton-Raphson algorithm for the coupled problem, resulting in the following linearized system:

(49)

R{KAU=0 wih R=AR. K= AK, and u— Au,. (50)
e=1 e=1 e=1

that determines at given global primary fieligheir linear incremenfA L in a typical Newton-type iterative solution
step. This system of non-linear equations has to be solved in a nested algorithm, where the deformation map and the
crack phase field are the global unknown variables.

4. REPRESENTATIVE NUMERICAL EXAMPLES

We now demonstrate the performance of the proposed virtual element formulation for the phase-field modeling of
ductile fracture at finite deformations by means of two representative numerical examples. For comparison purposes,
results of the standard FEM are also demonstrated. All computations are performed by using a nested Newton-
Raphson algorithm. Load stepping is applied when necessary. Because all formulations are linearized in a consistent
manner usingACEGEN, quadratic convergence is achieved within a load step. The material parameters used in this
section are the same for all examples and given in Table 1. They are used by many authors in the literature as
a reference for metals (Hallquist, 1984; Simo, 1988). In Section 4.1, we compare VEM and FEM results for the
standard single-edge-notched shear test of Aldakheel (2016), Ambati et al. (2015), and Miehe et al. (2017). Finally,
an axial stretch of a bar is investigated in Section 4.2.

To illustrate the capability and the flexible choice of the number of nodes in an element for VEM, various animal-
shaped Voronoi cells (bird, horse, snake, frog, koala, fish, kangaroo, ...) are employed in the undamaged as well as
the damaged zones (i.e., an area of interest) for the virtual element formulation in the following sections.

4.1 Single-Edge Notched Shear Test

The first benchmark test considers a square plate with a horizontal notch placed at the middle height from the left
outer surface to the center of the specimen. The geometrical setup and the loading conditions of the specimen are
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TABLE 1: Material parameters used in the numerical examples

No. Parameter Name Value Unit
1. E Young’s modulus 2069 GPa
2. v Poisson’s ratio 0.29 —
3. H Hardening parameter 0.13 GPa
4. Yo Initial yield stress 0.45 GPa
5. Yo Infinite yield stress  0.45/1.165 GPa
6. 5 Saturation parameter ~ 16.93 —
7. Ve Critical fracture energy 0.025/2.0  GPa
8. Mp Plastic viscosity 1078 GPa.s
9. ulf; Fracture viscosity 1078 GPa.s
10. l Fracture length scale 0.008/0.02 mm
11. C Fracture parameter  8.0/1.0 —

-

(a) BVP (b) Voronoi (c)T1/T2

FIG. 7: Single-edge notched shear test. (a) Geometry and boundary conditions, (b) VEM with Voronoi mesh, and (c) triangular
finite element mesh.

depicted in Fig. 7(a). The size of the square specimen is chosen £o-bé.5 mm. We fixed the bottom edge of

the plate and applied shear loading to the top edge until the plate is fully broken. The specimen is discretized by
using different virtual elements in Fig. 7(b) and finite element formulations in Fig. 7(c). Here we use the following
notations:VEM-VO with a Voronoi meshyEM-T2 with 6 noded triangle representindfiest-order VEM (Note

that: T2 in this case implies that the triangle mesh used is the same as for the second-order RiEVsacdnd-

order VEM); FEM-T 1 with linear triangle, andFEM-T2 with quadratic triangle, to test the robustness of the virtual
element formulation. A mesh refinement in the expected fracture zone is applied, this is based on the-ratia.

between the mesh size and the fracture length scdleas sketched in Fig. 7(a).

The evolution of the crack phase fieldn comparison to the evolution of the equivalent plastic steafor three
different deformation stages up to final rupture are depicted in Fig. 8. This was achieved by using the virtual element
formulations with various animal-shaped Voronoi cells, for fracture length $cal®.008 mm and the length/mesh
ratior = 4. The crack phase field initiates at the notch-tip, see Fig. 8(e), where the maximum equivalent plastic strain
« is concentrated as shown in Fig. 8(a). Thereafter, the crack propagates horizontally till separation in Fig. 8(g), as
outlined in Aldakheel (2016), Ambati et al. (2015), and Miehe et al. (2017).

Load-displacement curves of the overall structural response are plotted for different elements formulations of
FEM and VEM for comparison purposes in Fig. 9(a). The VEM results are in a good agreement with the reference
works. Table 2 compares the different FEM and VEM discretization, related to F-U curves in Fig. 9(a), with respect
to robustness and efficiency. Figure 9(b) illustrates the convergence properties for the different element formulations
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(a) (b)
(e) (H (g

FIG. 8: Single-edge notched shear test. Contour plots of the equivalent plasticesira{a)—(c) and the fracture phase-fieldn
(e)—(g) for three different deformation states up to final rupture.
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FIG. 9: Single-edge notched shear test. (a) Load—displacement responses for different VEM and FEM discretization. (b) Compar-
ison between the total number of iterations in each time step that required to achieve convergence for different discretization.

plotted in Fig. 9(a) at the final deformation state= 0.0048mm. We observe that virtual elements requifeder
steps and iterations for final convergence compared with FEM of higher order. Thus here, VEM is more robust than
FEM, however, this comes with extra computational costs.

4.2 Axial Stretch of a Bar

The second numerical example is concerned with analyzing the ductile failure behavior of a bar due to a prescribed
displacement; along the axial direction at the right side. Itis a standard benchmark problem of finite plasticity and has
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TABLE 2: A comparison between different FEM and VEM discretizations, related
to F-U curves in Fig. 9(a)

VEM-VO VEM-T2 FEM-T2 FEM-T1
Number of elements 12,369 11,109 11,109 11,109
Number of nodes 24,744 22,291 22,290 5,591
Number of equations 74,195 66,826 66,826 16,749
Number of steps 280 234 305 232
Total number of iterations 2,372 1,504 2,610 1,599
Average iterations/step 6.1134 5.76245 6.97861 6.07985

been analyzed by many authors (Aldakheel, 2017; Aldakheel and Miehe, 2017; Miehe et al., 2014; Simo and Miehe,
1992). Experimental observation shows that a necking zone takes place before final ductile rupture. The localized
plastic strains in the necking area and the subsequent ductile failure response will be used to test the robustness of the
virtual element formulation. The geometrical setup and the boundary conditions of the bar withfieigBimm and
lengthZ = 10mm are illustrated in Fig. 10. To trigger localization and necking in the center of the bar, a geometrical
imperfection is introduced in the central zone. Here, a reduction of the specimen net section at the central zone is
applied, in which the height at the center is chosen tddhbe= 0.99 H. At the left edge of the bar we applied a
Dirichlet boundary condition oft = 0 and applied a horizontal displacement at the right edge that has the magnitude
of 20% of the bar length, e.gz,= 0.2L. A mesh refinement in the expected fracture zone is applied for all VEM and
FEM element formulations, see Figs. 10(b) and 10(c).

Figure 11 shows the contour plots of the equivalent plastic stta@ind the fracture phase fieddsimulated using
the virtual element formulations with various animal-shaped Voronoi cells, for fracture lengthl sea®02 mm
and different deformation stages up to final failure. We observed a huge plastic deformation as a necking zone with
concentration hardening in Figs. 11(b) and 10(c) at the specimen center, resulting with crack initiation at center
zone as demonstrated in Fig. 11(i). Thereafter, the crack phase field propagates outward following the equivalent
plastic strain path till the complete failure as shown in Figs. 11(j) and 10(k). Load-displacement curves for different
elements formulations of FEM and VEM are displayed in Fig. 12. All simulations show similar behavior before crack

S|

(c) T1/T2

FIG. 10: Axial stretch of a bar. (a) Geometry and boundary conditions, (b) VEM with Voronoi mesh, and (c) triangular finite
element mesh.
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FIG. 11: Axial stretch of a bar. Contour plots of the equivalent plastic stsain (a)—(e) and the fracture phase-fieldh (g)—(k)
for five different deformation states up to final rupture.

force F [kN]

displacement & [mm)]

FIG. 12: Axial stretch of a bar. Load—displacement responses for different VEM and FEM discretization

initiation. Thereafter, all elements show almost closer results, except the FEM-T1 which exhibit a stiffer response. As
a consequence, the capability of VEM element with Voronoi mesh is comparable to using finite elements of higher
order.
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5. CONCLUSION

A virtual element scheme for the phase-field modeling of isotropic ductile fracture was outlined within this work.

It represents an initial contribution to the use of the VEM for numerically solving fracture-mechanics problems. In
contrast to the projection of the deformation map field as the only global field being sought in most virtual element
method applications up to now, this work further extends VEM toward multi-physics problems. To this end, we
proposed a minimization of a pseudo-potential density functional for the coupled problem undergoing large strains.
The key aspect of development was the extension toward the virtual element formulation due to its flexibility in
dealing with complex element shapes that can even be non convex and arbitrary number of nodes. We examined the
performance of the formulation by means of two numerical examples.
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