Library Subscription: Guest
Annual Review of Heat Transfer
Vish Prasad (open in a new tab) Department of Mechanical Engineering, University of North Texas, Denton, Texas 76207, USA
Yogesh Jaluria (open in a new tab) Department of Mechanical and Aerospace Engineering, Rutgers-New Brunswick, The State University of New Jersey, Piscataway, NJ 08854, USA
Zhuomin M. Zhang (open in a new tab) George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA

ISSN Print: 1049-0787

ISSN Online: 2375-0294

SJR: 0.363 SNIP: 0.21 CiteScore™:: 1.8

Indexed in

Clarivate CBCI (Books) Scopus Google Scholar CNKI Portico Copyright Clearance Center iThenticate Scientific Literature

NONEQUILIRIUM MOLECULAR DYNAMICS METHODS FOR LATTICE HEAT CONDUCTION CALCULATIONS

pages 177-203
DOI: 10.1615/AnnualRevHeatTransfer.2014007407
Get accessGet access

ABSTRACT

Over the last decades, molecular dynamics simulations have been extensively used to calculate lattice heat conduction in nanomaterials and bulk materials, as the realistic potential functions, software package, and many core clusters have become widely accessible. Nonequilibrium molecular dynamics, particularly the inhomogeneous ones, have been a popular choice of method owing to their intuitive way of applying the perturbation to the system. On the other hand, despite its simplicity, the results can be significantly influenced by the simulation parameters, and various methodological issues such as validity of linear response theory, effect of sizes, and influence of temperature or heat flux control need to be carefully checked and taken into account. These aspects are discussed for various types of nonequilibrium methods based on homogeneous/inhomogeneous and steady/transient molecular dynamics simulations. Their capability to calculate bulk thermal conductivity, heat wave propagation, the classical size effect of thermal conductivity at the nanoscale, and total and spectral thermal boundary conductance are explained and demonstrated with examples.

Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections Prices and Subscription Policies Begell House Contact Us Language English 中文 Русский Português German French Spain