Library Subscription: Guest
ICHMT DL Home Current Year Archives Executive Committee International Centre for Heat and Mass Transfer

CONVECTION SUPPRESSION IN AN ATTIC SHAPED ENCLOSURE

DOI: 10.1615/ICHMT.2008.CHT.440
11 pages

Timothy Anderson


Mike Duke
Department of Engineering, University of Waikato, Hamilton, New Zealand 3240

James Carson
Department of Engineering, University of Waikato, Hamilton, New Zealand 3240

Abstract

In recent times there has been growing interest in the integration of solar collectors, for water heating, into the façade of buildings. However, the design methodology of these devices remains largely the same as typical “stand-alone” collectors. As such it is still common for materials with a high thermal resistance to be used for insulating the rear surface of these collectors.
Unlike a “stand-alone” solar collector that is exposed to the atmosphere at all faces; a building integrated system allows the opportunity for air to act as an insulator at the rear surface of the solar collector. The use of convection suppression devices has been widely discussed in the literature as a means of reducing natural convection heat loss from the front surface of glazed solar collectors. However in this study the use of baffles in an attic was examined as a means of suppressing heat loss by natural convection from the rear surface of a roof-integrated solar collector. The aim of the study was to examine whether the use of baffles would allow the cost of building integrated collectors to be reduced by removing the cost of insulating material.
To determine the effect of baffles in the attic space at the rear surface of the collector, a 3-dimensional triangular cross sectioned enclosure with a vertical aspect ratio of 0.5 and a horizontal aspect ratio of 3.3 was modelled. The flow patterns and heat transfer in the enclosure were determined for Grashof Numbers in the range of 106 to 107 using a commercially available finite volume CFD solver.
It was found that the use of a single adiabatic baffle mounted vertically downwards from the apex, and extending the length of the enclosure, would alter the flow such that the heat transfer due to natural convection was reduced with respect to the length of the baffle.
Furthermore, it was observed that a series of convection cells, not previously reported in the literature, appeared to exist along the length of the enclosure. As such, it may be possible to derive additional benefit in reducing the heat transfer by adding lateral baffles in addition to the single longitudinal baffle modelled in this study.

ICHMT Digital Library

Bow shocks on a jet-like solid body shape. Thermal Sciences 2004, 2004. Pulsed, supersonic fuel jets - their characteristics and potential for improved diesel engine injection. PULSED, SUPERSONIC FUEL JETS - THEIR CHARACTERISTICS AND POTENTIAL FOR IMPROVED DIESEL ENGINE INJECTION
View of engine compartment components (left). Plots of temperature distributions in centreplane, forward of engine (right). CHT-04 - Advances in Computational Heat Transfer III, 2004. Devel... DEVELOPMENT AND CURRENT STATUS OF INDUSTRIAL THERMOFLUIDS CFD ANALYSIS
Pratt & Whitney's F-135 Joint Strike Fighter Engine under test in Florida is a 3600F class jet engine. TURBINE-09, 2009. Turbine airfoil leading edge stagnation aerodynamics and heat transfe... TURBINE AIRFOIL LEADING EDGE STAGNATION AERODYNAMICS AND HEAT TRANSFER - A REVIEW
Refractive index reconstructed field. (a) Second iteration. (b) Fourth iteration. Radiative Transfer - VI, 2010. Theoretical development for refractive index reconstruction from a radiative ... THEORETICAL DEVELOPMENT FOR REFRACTIVE INDEX RECONSTRUCTION FROM A RADIATIVE TRANSFER EQUATION-BASED ALGORITHM
Two inclusion test, four collimated sources. Radiative Transfer - VI, 2010. New developments in frequency domain optical tomography. Part II. Application with a L-BFGS associated to an inexa... NEW DEVELOPMENTS IN FREQUENCY DOMAIN OPTICAL TOMOGRAPHY. PART II. APPLICATION WITH A L-BFGS ASSOCIATED TO AN INEXACT LINE SEARCH