Library Subscription: Guest
ICHMT DL Home Current Year Archives Executive Committee International Centre for Heat and Mass Transfer


DOI: 10.1615/ICHMT.2009.HeatTransfGasTurbSyst.270
18 pages

Ryan Erickson
Mechanical Engineering Department University of Minnesota, USA

Terrence W. Simon
Department of Mechanical Engineering, University of Minnesota, 111 Church St. S.E., Minneapolis, Minnesota 55455, USA


Experimental and computation results which document mixing of passage flow and leakage flow in the leading edge region of a rotor stage of a high pressure turbine are presented. Of particular interest are the effects of endwall contour geometries on mixing of the two flows and on film cooling coverage by the leakage flow over the endwall. The setting is a linear, stationary cascade which represents many features of the actual engine, such as geometry, Reynolds number, approach flow turbulence level and scale, and leakage mass flow rates. Rotation, density gradient, and upstream airfoil row effects are not represented. Two endwall geometries which give quite different acceleration profiles in the airfoil row entry plane region are examined. The flowfield in the leakage flow delivery plenum, important to the mixing process, is characterized by measurements and computation. The effects of leakage flow injection on the aerodynamic losses in the passage are also measured and computed. The loss pattern at the passage exit shows the effects of boundary layers on the pressure surface, the suction surface, and the two endwalls. Passage secondary flow features, such as remnants of the passage, horseshoe, and corner vortices are visible in the exit passage loss data. The measured and computed fields are similar, though the computed fields seem to display a larger-than-real decay of turbulent transport. The effects of changes in leakage flow injection rate on the losses are minimal for the cases studies. One endwall geometry has been experimentally investigated, though both endwall geometries have been computationally documented. Measurements of adiabatic effectiveness on the contoured endwall show coverage only over the upstream portion of the passage, with concentration on the suction side. The effects of the horseshoe and corner vortices on mixing of the leakage and passage flows are evident in the effectiveness pattern. Computed effectiveness distributions show similar trends to those seen in the measurements; however, measured effectiveness values are generally lower than computed values, indicating the more rapid dissipation of turbulent transport in the computations than in reality. Comparison of computed effectiveness distributions shows that the dolphin nose geometry leads to better overall film cooling coverage on the endwall.

ICHMT Digital Library

Bow shocks on a jet-like solid body shape. Thermal Sciences 2004, 2004. Pulsed, supersonic fuel jets - their characteristics and potential for improved diesel engine injection. PULSED, SUPERSONIC FUEL JETS - THEIR CHARACTERISTICS AND POTENTIAL FOR IMPROVED DIESEL ENGINE INJECTION
View of engine compartment components (left). Plots of temperature distributions in centreplane, forward of engine (right). CHT-04 - Advances in Computational Heat Transfer III, 2004. Devel... DEVELOPMENT AND CURRENT STATUS OF INDUSTRIAL THERMOFLUIDS CFD ANALYSIS
Pratt & Whitney's F-135 Joint Strike Fighter Engine under test in Florida is a 3600F class jet engine. TURBINE-09, 2009. Turbine airfoil leading edge stagnation aerodynamics and heat transfe... TURBINE AIRFOIL LEADING EDGE STAGNATION AERODYNAMICS AND HEAT TRANSFER - A REVIEW
Refractive index reconstructed field. (a) Second iteration. (b) Fourth iteration. Radiative Transfer - VI, 2010. Theoretical development for refractive index reconstruction from a radiative ... THEORETICAL DEVELOPMENT FOR REFRACTIVE INDEX RECONSTRUCTION FROM A RADIATIVE TRANSFER EQUATION-BASED ALGORITHM
Two inclusion test, four collimated sources. Radiative Transfer - VI, 2010. New developments in frequency domain optical tomography. Part II. Application with a L-BFGS associated to an inexa... NEW DEVELOPMENTS IN FREQUENCY DOMAIN OPTICAL TOMOGRAPHY. PART II. APPLICATION WITH A L-BFGS ASSOCIATED TO AN INEXACT LINE SEARCH