Library Subscription: Guest
Radiative Transfer I. Proceedings of the First International Symposium on Radiation Transfer
August, 1995 , Kusadasi, Turkey

DOI: 10.1615/ICHMT.1995.RadTransfProc


ISBN Print: 978-1-56700-068-9

ISSN Online: 2642-5629

ISSN Flash Drive: 2642-5661

TOTAL SCATTERING AND ABSORPTION CROSS SECTIONS OF CARBONACEOUS SOOT PARTICLES

DOI: 10.1615/ICHMT.1995.RadTransfProc.230
Get accessGet access

ABSTRACT

The absorption and scattering properties of fractal-like soot aggregates were investigated emphasizing the effects of aggregate and particle polydispersity as well as variable refractive index within each primary particle. The computational calculations were performed using a general formulation for the internal electric field of an assembly of small spherical particles irradiated by an electromagnetic wave that takes into account multiple-scattering and self interaction effects. Numerical cluster-cluster simulations were used to construct aggregates having appropriate fractal properties and prescribed number of primary particles and particle diameter. In addition, theoretical results based on the Rayleigh-Debye-Gans approximation for mass-fractal aggregates (RDG/FA) were also obtained in order to evaluate its potentialities to treat optical properties of aggregated matter - such as soot. Over the range of study, it was concluded that aggregation plays an important role in the total scattering predictions while absorption seems to be independent of this effect. The influence of aggregate polydispersity seems to be more noticeable in the scattering predictions while absorption is more affected by particle polydispersity. Furthermore, the primary particle variable refractive index study has revealed that the coat refractive index appears to dominate the scattering patterns while the existence of an inner core region may be neglected. Finally the RDG/FA predictions generally agreed with the more exact calculations, confirming its applicability to predict the optical properties of both monodisperse and polydisperse populations of soot aggregates.

Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections Prices and Subscription Policies Begell House Contact Us Language English 中文 Русский Português German French Spain