Inscrição na biblioteca: Guest
International Journal for Multiscale Computational Engineering
Jacob Fish (open in a new tab) Department of Civil Engineering and Engineering Mechanics, Columbia University, New York, New York 10027, USA
J. Tinsley Oden (open in a new tab) Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX 78712, USA
Somnath Ghosh (open in a new tab) Departments of Civil & Systems Engineering, Mechanical Engineering, and Material Science Engineering, Johns Hopkins University, Baltimore, MD, USA
Arif Masud (open in a new tab) Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 3129E Newmark Civil Engineering Laboratory, MC-250, Urbana, Illinois 61801-2352, USA
Klaus Hackl (open in a new tab) Institute of Mechanics of Materials, Ruhr-University Bochum, Bochum, 44721, Germany
Karel Matous (open in a new tab) Department of Aerospace and Mechanical Engineering, Center for Shock Wave-Processing of Advanced Reactive Materials, University of Notre Dame, Notre Dame, Indiana 46556, USA
Thomas J.R. Hughes (open in a new tab) Institute for Computational Engineering and Sciences (ICES), The University of Texas at Austin, 201 East 24th Street, C0200, Austin, TX 78712-1229, USA
Caglar Oskay (open in a new tab) Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA
Tamar Schlick (open in a new tab) Department of Chemistry, New York University, New York, New York 10003, USA; Courant Institute of Mathematical Sciences, New York University, New York, New York, 10012, USA; NYU-ECNU Center for Computational Chemistry, NYU Shanghai, China
The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.4 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.3 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 2.2 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00034 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.46 SJR: 0.333 SNIP: 0.606 CiteScore™:: 3.1 H-Index: 31

Indexed in

Emerging Sources Citation Index (ESCI) Clarivate SCIE Scopus Ei Compendex/ Engineering Village Chemical Abstracts Service EBSCO INSPEC British Library Google Scholar Ulrich's CNKI Portico Copyright Clearance Center iThenticate Scientific Literature

IS IT NECESSARY TO INCLUDE BIARTICULAR EFFECTS WITHIN JOINT TORQUE REPRESENTATIONS OF KNEE FLEXION AND KNEE EXTENSION?

pages 117-130
DOI: 10.1615/IntJMultCompEng.2011002379
Get accessGet access

RESUMO

The purpose of this study was to consider whether it is necessary for biarticular effects to be accounted for in subject-specific representations of maximal voluntary knee extension and knee flexion torques. Isovelocity and isometric knee torques were measured on a single participant at three different hip angles using a Contrex MJ dynamometer. Maximal voluntary torque was represented by a 19-parameter two-joint function of knee and hip joint angles and angular velocities with the parameters determined by minimizing a weighted rms difference between measured torques and the two-joint function. The weighted rms difference between the two-joint function and the measured knee flexion torques was 14 Nm or 9% of maximum torque, while for knee extension the difference was 26 Nm or 9% of maximum torque. The two-joint representation was shown to be more accurate than an existing single-joint representation for torques measured at hip angles other than those used to derive the single-joint function parameter values. The differences between the traditionally used single-joint representation and the measured knee flexion and knee extension torques were largest for the most extended hip joint angle (15 and 18% of maximum torque, respectively), while the corresponding differences for the two-joint function were 9% and 8% of maximum torque. It is concluded that a two-joint function can account for changes in knee flexion and knee extension joint torques due to both monoarticular and biarticular muscles over a range of both hip and knee angles, and this has the potential to improve the biofidelity of whole-body subject-specific torque-driven simulation models.

Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa Políticas de preços e assinaturas Begell House Contato Language English 中文 Русский Português German French Spain