Inscrição na biblioteca: Guest
Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa
International Journal of Fluid Mechanics Research
ESCI SJR: 0.206 SNIP: 0.446 CiteScore™: 0.5

ISSN Imprimir: 2152-5102
ISSN On-line: 2152-5110

Volumes:
Volume 46, 2019 Volume 45, 2018 Volume 44, 2017 Volume 43, 2016 Volume 42, 2015 Volume 41, 2014 Volume 40, 2013 Volume 39, 2012 Volume 38, 2011 Volume 37, 2010 Volume 36, 2009 Volume 35, 2008 Volume 34, 2007 Volume 33, 2006 Volume 32, 2005 Volume 31, 2004 Volume 30, 2003 Volume 29, 2002 Volume 28, 2001 Volume 27, 2000 Volume 26, 1999 Volume 25, 1998 Volume 24, 1997 Volume 23, 1996 Volume 22, 1995

International Journal of Fluid Mechanics Research

DOI: 10.1615/InterJFluidMechRes.v42.i6.10
pages 463-484

Unsteady MHD Hartmann − Couette Flow Due to Time Dependent Movement of the Plate of a Darcian Channel with Hall Current and Ion-Slip Effects

Jitendra Singh
Vijayanagara Sri Krishnadevaraya University
Naveen Joshi
Department of Mathematics, V.S.K. University Bellary-583105, Karnataka, India
S. Ghousia Begum
Department of Mathematics, V.S.K. University Bellary-583105, Karnataka, India

RESUMO

Unsteady MHD Hartmann−Couette flow of a viscous, incompressible and electrically conducting fluid within parallel plate porous Darcian channel with Hall current and ion-slip effects is carried-out. Fluid flow within the channel is induced due to time dependent movement of the upper plate of the channel and by a constant pressure gradient applied along the axis of the plates of the Darcian channel. Fluid flow within the Darcian channel is permeated by a uniform transverse magnetic field, which is fixed relative to the stationary plate. Laplace transform technique is used to obtain an exact solution of the governing equations. The expression for the shear stress at the moving plate due to primary and secondary flows is also derived. To highlight the transient approach to the final steady state flow and the effects of Hall current, ion-slip, magnetic field, permeability and suction/injection, asymptotic behavior of the solution is analyzed for small and large values of time. It is noticed that, at the starting stage, secondary velocity is independent of permeability and there are no flows in the secondary flow direction in the absence of Hall current. At the final stage, fluid flow is in quasi-steady state. Steady state flow executes spatial oscillations in the flow-field whereas unsteady state flow exhibits spatial as well as inertial oscillation in the flow-field. Inertial oscillations in the flow-field are due to presence of Hall current. Numerical values of primary and secondary fluid velocities and that of shear stress at the moving plate of the Darcian channel due to primary and secondary flows are represented graphically for various values of pertinent flow parameters.


Articles with similar content:

Couette Flow of a Burgers' Fluid with Rotation
International Journal of Fluid Mechanics Research, Vol.34, 2007, issue 6
Saleem Ashgar, Rahmat Ellahi
MHD PERISTALTIC ROTATING FLOW OF A COUPLE STRESS FLUID THROUGH A POROUS MEDIUM WITHWALL AND SLIP EFFECTS
Special Topics & Reviews in Porous Media: An International Journal, Vol.10, 2019, issue 3
M. Veera Krishna, Ali J. Chamkha
SLIP EFFECTS IN THE HYDROMAGNETIC FLOW OF A VISCOELASTIC FLUID THROUGH POROUS MEDIUM OVER A POROUS OSCILLATORY STRETCHING SHEET
Journal of Porous Media, Vol.20, 2017, issue 3
Muhammad Sajid, Nasir Ali, Sami Ullah Khan, Zaheer Abbas
EFFECT OF HALL CURRENTS ON INTERACTION OF PERISTALTIC FLOW WITH PULSATILE MAGNETOFLUID THROUGH A POROUS MEDIUM
Journal of Porous Media, Vol.13, 2010, issue 2
N. S. Gad
HALL CURRENT EFFECT ON THERMAL INSTABILITY OF COMPRESSIBLE VISCOELASTIC DUSTY FLUID IN POROUS MEDIUM
Heat Transfer Research, Vol.43, 2012, issue 2
Pardeep Kumar