Inscrição na biblioteca: Guest
Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa
International Journal of Fluid Mechanics Research
ESCI SJR: 0.206 SNIP: 0.446 CiteScore™: 0.9

ISSN Imprimir: 2152-5102
ISSN On-line: 2152-5110

Volumes:
Volume 47, 2020 Volume 46, 2019 Volume 45, 2018 Volume 44, 2017 Volume 43, 2016 Volume 42, 2015 Volume 41, 2014 Volume 40, 2013 Volume 39, 2012 Volume 38, 2011 Volume 37, 2010 Volume 36, 2009 Volume 35, 2008 Volume 34, 2007 Volume 33, 2006 Volume 32, 2005 Volume 31, 2004 Volume 30, 2003 Volume 29, 2002 Volume 28, 2001 Volume 27, 2000 Volume 26, 1999 Volume 25, 1998 Volume 24, 1997 Volume 23, 1996 Volume 22, 1995

International Journal of Fluid Mechanics Research

DOI: 10.1615/InterJFluidMechRes.v40.i4.30
pages 324-343

Laminar Falling Film Flow of Aqueous Li Br Solution on a Horizontal Elliptical Tube

M. H. J. Abyaneh
Science & Research Branch, Islamic Azad University, Tehran, Iran
Mohammad Hassan Saidi
Center of Excellence in Energy Conversion (CEEC), School of Mechanical Engineering, Sharif University of Technology, P.O. Box 11155-9567, Tehran, Iran

RESUMO

Flow hydrodynamics of laminar falling film of aqueous Li Br solution (Li Br − H2O) on a horizontal elliptical tube has been investigated in this research. The film velocity distribution and film thickness, namely, the flow characteristics are determined by solving analytically simultaneous simplified Navier − Stokes equations and continuity equation in polar and Cartesian coordinates. The analysis is based on steady state laminar flow of falling liquid film of Li Br − H2O on a horizontal elliptical tube in polar model and Cartesian model (CM), for cases in which traction on the film surface is considered negligible. Models are compared with each other in three cases of aspect ratios (Ar), tube diameters, flow rate, mass concentration and temperature of solution. The flow characteristics values in Cartesian model are over predicted with respect to polar model. The results show that the error in Cartesian model with smaller tube diameter is increased as mass flow rate increases. In Cartesian model, the aspect ratio and tube diameter show no effect on flow characteristics values around the elliptical tube. Therefore, as the eccentricity of ellipse (the ratio of the ellipse focal separation to the major axis) in the elliptical tube increases, the error increases as well. Finally the flow characteristics around horizontal elliptical tube with Ar > 1 are showing better performance with respect to flow characteristics around horizontal elliptical tube with Ar < 1.


Articles with similar content:

CAVITATION IN NOZZLES OF PLAIN ORIFICE ATOMIZERSWITH VARIOUS LENGTH-TO-DIAMETER RATIOS
Atomization and Sprays, Vol.20, 2010, issue 6
Akio Tomiyama, Shigeo Hosokawa, Akira Sou
ANALYSIS OF HOLLOW-CONE SPRAY INJECTED IN AN UNCONFINED, ISOTHERMAL, COANNULAR SWIRLING JET ENVIRONMENT
Atomization and Sprays, Vol.27, 2017, issue 1
Kuppuraj Rajamanickam, Dilip Sanadi, Saptarshi Basu
THERMAL TRANSPORT BEHAVIOR OF A LIQUID PLUG MOVING INSIDE A DRY CAPILLARY TUBE
Heat Pipe Science and Technology, An International Journal, Vol.3, 2012, issue 2-4
Sameer Khandekar, Ashish Kumar Bajpai
FLOW STRUCTURE IN CIRCULAR TUBES WITH SEGMENTAL BAFFLES
Journal of Flow Visualization and Image Processing, Vol.12, 2005, issue 3
S. B. Chin, Xiao Yu Luo, Mushtak Al-Atabi
Condensation of Superheated R134a Vapor inside Horizontal Smooth and Three-dimensional (3-D) Microfin Tubes
International Heat Transfer Conference 12, Vol.50, 2002, issue
Qinghua Chen, Mingdao Xin