Inscrição na biblioteca: Guest
International Journal of Fluid Mechanics Research

Publicou 6 edições por ano

ISSN Imprimir: 2152-5102

ISSN On-line: 2152-5110

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.1 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.3 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.0002 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.33 SJR: 0.256 SNIP: 0.49 CiteScore™:: 2.4 H-Index: 23

Indexed in

Metal Solidification during Spray Forming

Volume 24, Edição 4-6, 1997, pp. 623-632
DOI: 10.1615/InterJFluidMechRes.v24.i4-6.180
Get accessGet access

RESUMO

An essential feature of the spray forming process for the production of near net shaped metal products is a suitable composition of the spray cone prior to impingement onto the substrate or deposit. Excellent product qualities and homogeneities need a mixture of particles in different stages of their individual solidification. Modeling of phase change behavior of metal melts is an important part of an overall thermal modeling of the process. Control of the solidification process is one of the key issues in spray forming research. The thermal history of a metal element from superheating (in advance of the atomization process) via solidification and cooling to room temperature has significant influence on the resulting material properties of the product. Dependent on the alloy composition, individual solidification models must be derived. This contribution describes the droplet solidification in flight in the spray cone and further on in the resulting deposit during spray forming for a steel alloy. For the simulation of the spray cone behavior, a multiphase flow model is established including momentum and thermal coupling. The description of the transient thermal conditions in the sprayed deposit, including necessary boundary conditions, is derived in a general coordinate based heat conduction algorithm.

Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa Políticas de preços e assinaturas Begell House Contato Language English 中文 Русский Português German French Spain