Inscrição na biblioteca: Guest
Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa
International Journal of Medicinal Mushrooms
Fator do impacto: 1.423 FI de cinco anos: 1.525 SJR: 0.431 SNIP: 0.716 CiteScore™: 2.6

ISSN Imprimir: 1521-9437
ISSN On-line: 1940-4344

Volumes:
Volume 22, 2020 Volume 21, 2019 Volume 20, 2018 Volume 19, 2017 Volume 18, 2016 Volume 17, 2015 Volume 16, 2014 Volume 15, 2013 Volume 14, 2012 Volume 13, 2011 Volume 12, 2010 Volume 11, 2009 Volume 10, 2008 Volume 9, 2007 Volume 8, 2006 Volume 7, 2005 Volume 6, 2004 Volume 5, 2003 Volume 4, 2002 Volume 3, 2001 Volume 2, 2000 Volume 1, 1999

International Journal of Medicinal Mushrooms

DOI: 10.1615/IntJMedMushrooms.2019032998
pages 1181-1191

Increasing of the Contain of Carotenoids in Caterpillar Mushroom, Cordyceps militaris (Ascomycetes) by Using the Fungal Elicitors Cultivation

Hongbiao Tang
College of Food Science and Institute of Food Biotechnology, South China Agriculture University, Guangzhou 510642, China; Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510642, China
Zhiwei Ye
College of Food Science and Institute of Food Biotechnology, South China Agriculture University, Guangzhou 510642, China; Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510642, China
Cong Liu
College of Food Science and Institute of Food Biotechnology, South China Agriculture University, Guangzhou 510642, China
Liqiong Guo
Department of Bioengineering, College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou 510640, China; Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510640, China
Jun-Fang Lin
Department of Bioengineering, College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou 510640, China; Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510640, China
Hua Wang
College of Food Science and Institute of Food Biotechnology, South China Agriculture University, Guangzhou 510642, China; Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510642, China
Fan Yun
Alchemy Biotechnology Co., Ltd. of Guangzhou City, Guangzhou 510760, China
Linzhi Kang
Alchemy Biotechnology Co., Ltd. of Guangzhou City, Guangzhou 510760, China

RESUMO

As a natural pigment, cordycepic carotenoids have many bioactive functions, such as antiinflammation, anticancer, and antioxidation. In addition, the good coloring of this hydrophilic pigment enables it to have wide application in the food industry. This study investigated five species of fungal elicitors, namely, Rhodotorula glutinis, Saccharomyces cerevisiae, Monascus ruber, Blakeslea trispora, and Flammulina velutipes, to evaluate their effects on carotenoid accumulation in Cordyceps militaris. Results showed that all fungal elicitors, except Rh. glutinis, have no positive effect on the biosynthesis of cordycepic carotenoids. The Rh. glutinis elicitor remarkably stimulated the accumulation of carotenoids with a 13.72% increase compared with the control. Subsequently, the entire Rh. glutinis elicitor (part NHK) was divided into three parts, namely, exopolysaccharide (EPS) (part E), mixture of EPS and protein (part PE), and other components (part O), to analyze their effects on carotenoid accumulations. Results showed that part O may be the effective component that remarkably stimulates the biosynthesis of carotenoids with a 26% increase compared with the control. This research demonstrated that Rh. glutinis elicitor can effectively increase the content of natural carotenoids in C. militaris, and provided an important reference for the development and utilization of carotenoid industrialization.

Referências

  1. Liang Z. The current situation and thinking of research and development of Cordyceps fungi in China. Acta Edulis Fungi. 2001;8:53-62.

  2. Yi Z, Huang W, Ren Y, Onac E, Zhou G, Peng S, Wang X, Li H. LED lights increase bioactive substances at low energy costs in culturing fruiting bodies of Cordyceps militaris. Sci Hortic. 2014;175:139-43.

  3. Zeng H, Zeng H, Song B, Li T. Cordyceps militaris: current research status and future industrial potential. Acta Edulis Fungi. 2011;18:70-74.

  4. Li C, Fan Q, Jiang X, Yu Z. Study on the optimization of alkaline extraction conditions of Cordyceps militaris protein. Food Ferment Ind. 2012;38:185-88.

  5. Fu M. Study on the carotenoid produced from Cordyceps militaris L. J Food Sci Biotechnol. 2005;5:107-10.

  6. Chen C, Bau T, Bao H. Chemical composition analysis of cultured Cordyceps militaris. Food Sci. 2013;34:36-40.

  7. Dong JZ, Wang SH, Ai XR, Yao L, Sun ZW, Lei C, Wang Y, Wang Q. Composition and characterization of cordyxanthins from Cordyceps militaris fruit bodies. J Funct Food. 2013;5:1450-55.

  8. Yan X, Bao H, Bau T. Isolation and identification of one natural pigment from cultured Cordyceps militaris. Mycosystema. 2010;29:777-81.

  9. Wisutiamonkul A, Ampomah DC. Carotenoid accumulation and gene expression during durian (Durio zibethinus) fruit growth and ripening. Sci Hortic. 2017;220:233-42.

  10. Ben AS, Rodrigo M, Saddoud O, Zacarias L, Hajlaoui MR, Mars M. Carotenoids and colour diversity of traditional and emerging Tunisian orange cultivars (Citrus sinensis (L.) Osbeck). Sci Hortic. 2018;227:296-304.

  11. Chen L, Bai G, Yang R, Zang J, Zhou T, Zhao G. Encapsulation of P-carotene within ferritin nanocages greatly increases its water-solubility and thermal stability. Food Chem. 2014;149:307-12.

  12. Buzzini P, Innocenti M, Turchetti B, Libkind D, Broock M, Mulinacci N. Carotenoid profiles of yeasts belonging to the genera Rhodotorula, Rhodosporidium, Sporobolomyces, and Sporidiobolus. Can J Microbiol. 2007;53:1024-31.

  13. Cobban A, Edgcomb VP, Burgaud G, Repeta D, Leadbetter ER. Revisiting the pink-red pigmented basidiomycete mirror yeast of the phyllosphere. Microbiol. 2016;5:846-55.

  14. Gmoser R, Ferreira JA, Lennartsson PR, Taherzadeh MJ. Filamentous ascomycetes fungi as a source of natural pigments. Fungal Biol Biotechnol. 2017;4:4-11.

  15. Aasen AJ, Jensen SL. Fungal carotenoids. II. The structure of the carotenoid acid neurosporaxanthin. Acta Chem Scand. 1965;19:1843-53.

  16. Lian T, Dong C, Yang T, Sun J. Three types of geranylgeranyl diphosphate synthases from the medicinal caterpillar fungus, Cordyceps militaris (Ascomycetes). Int J Med Mushrooms. 2014;16:115-24.

  17. Zheng P, Xia Y, Xiao G, Xiong C, Hu X, Zhang S, Zheng H, Huang Y, Zhou Y, Wang S, Zhao G, Liu X, St Leger RJ, Wang C. Genome sequence of the insect pathogenic fungus Cordyceps militaris, a valued traditional Chinese medicine. Genome Biol. 2011;12:R116.

  18. Estrada AF, Youssar L, Scherzinger D. The ylo-1 gene encodes an aldehyde dehydrogenase responsible for the last reaction in the Neurospora carotenoid pathway. Mol Microbiol. 2008;69:1207-20.

  19. Saelices L, Youssar L, Holdermann I. Identification of the gene responsible for torulene cleavage in the Neurospora carotenoid pathway. Mol Genet Genomics. 2007;278:527-37.

  20. Strobel I, Breitenbach J. Carotenoids and carotenogenic genes in Podospora anserina: engineering of the carotenoid composition extends the life span of the mycelium. Curr Genet. 2009;55:175-84.

  21. Zhu H, Chen M. Isolation and characterization of the carotenoid biosynthetic genes LCYB, LCYE and CHXB from strawberry and their relation to carotenoid accumulation. Sci Hortic. 2015;182:134-44.

  22. Viacava GE, Goyeneche R. Natural elicitors as preharvest treatments to improve postharvest quality of Butterhead lettuce. Sci Hortic. 2018;228:145-52.

  23. Han JR, Gao PP. Effect of several elicitors on sclerotia biomass and carotenoid yield of Penicillium sp. PT95 during solid-state fermentation of corn meal. World J Microbiol Biotechnol. 2002;18:367-71.

  24. Wang W, Yu L, Zhou P. Effects of different fungal elicitors on growth, total carotenoids and astaxanthin formation by Xanthophyllomyces dendrorhous. J Bioresour Technol. 2006;97:26-31.

  25. Bu L, Liang ZQ, Liu AY. Inducing conditions of fungal elicitor on Cordycepin Acceleration. Guizhou Agric Sci. 1999;27:3-5.

  26. Li Z, Xiao Y, Liang Z. Study on the effect of fungal polysaccharide elicitors on increasing the content of cordycepin. Acta Edulis Fungi. 2006;25:34-37.

  27. Ma X, Jia J, Teng G, Ma R, Yu J, Gui Z. Screening of fungal polysaccharide elicitors and optimization of elicitation conditions for polysaccharide from Cordyceps militaris. Sci Sericul. 2012;38:734-39.

  28. Yin L, Lin J, Qian W, Ye Z, Luo S, Guo L, Yun Fan. Study on liquid medium optimization and extraction process of Cordyceps militaris with high yield of carotenoids. Food Ind Sci Technol. 2017;38:79-84.

  29. Wang YM, Zhu WX, An LG, Yang GW. Study on extraction, purification and immunomodulatory effect of cordyceps poly-saccharide of Cordyceps militaris. Food Drug. 2009;3:8-11.

  30. Yang T, Sun J, Lian T, Wang W, Dong C. Process optimization for extraction of carotenoids from medicinal caterpillar fungus, Cordyceps militaris (Ascomycetes). Int J Med Mushrooms. 2014;16:125-35.

  31. Pfaffl MW, Horgan GW, Dempfle L. Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res. 2002;30(9):e36.

  32. Rodriguez-Amaya DB. A guide to carotenoid analysis in foods. Washington, D.C.: International Life Sciences Institute Press; 2001.

  33. Baldrich P, Campo S, Wu M, Liu T, Hsing YC, San Segundo B. MicroRNA-mediated regulation of gene expression in the response of rice plants to fungal elicitors. RNA Biol. 2015;12:847-63.

  34. Zhai X, Jia M, Chen L, Zheng C, Rahman K, Han T, Qin L. The regulatory mechanism of fungal elicitor-induced secondary metabolite biosynthesis in medical plants. Crit Rev Microbiol. 2017;43:238-61.

  35. Gu S, Gong H, Yang B, Bu M. Application and prospect of fungi elicitors in fermentation industry. Chin J Biotechnol. 2013;11:1558-72.

  36. Wang DH, Wei LL, Zhang Y, Zhang MJ, Gu SB. Physicochemical and microbial responses of Streptomyces natalensis HW-2 to fungal elicitor. Appl Microbiol Biotechnol. 2017;101:6705-12.

  37. Radman R, Saez T, Bucke C, Keshavarz T. Elicitation of plants and microbial cell systems. Biotechnol Appl Biochem. 2003;37:91-102.

  38. Gao H. Primary study on regulation mechanism of carotenoids accumulation in citrus callus [dissertation]. Wuhan: Huazhong Agric University; 2013.

  39. Yang T, Guo M, Yang H. The blue-light receptor CmWC-1 mediates fruit body development and secondary metabolism in Cordyceps militaris. Appl Microbiol Biotechnol. 2016;100:743-55.

  40. Unagul P, Wongsa P, Kittakoop P. Production of red pigments by the insect pathogenic fungus Cordyceps unilateralis BCC 1869. J Ind Microbiol Biotechnol. 2005;32:135-40.

  41. Dong C, Yao Y. Isolation, characterization of melanin derived from Ophiocordyceps sinensis, an entomogenous fungus endemic to the Tibetan Plateau. J Biosci Bioeng. 2012;113:474-79.

  42. Lu R, Luo F, Hu F. Identification and production of a novel natural pigment, cordycepoid A, from Cordyceps bifusispora. Appl Microbiol Biotechnol. 2013;97:6241-49.

  43. Wei P, Liu L, Liu T. Three new pigment protein tyrosine phosphatases inhibitors from the insect parasite fungus Cordyceps gracilioides: terreusinone A, pinophilin C and cryptosporioptide A. Molecules. 2015;20:5825-34.


Articles with similar content:

Comparative Study on Bioactivities from Lingzhi or Reishi Medicinal Mushroom, Ganoderma lucidum (Agaricomycetes), Gives an Insight into the Fermentation Broth Showing Greater Antioxidative Activities
International Journal of Medicinal Mushrooms, Vol.22, 2020, issue 7
Qi Yang, Xianchun Wang, Yingjun Zhou, Shaowei Yan, Zhoumei Zhang, Wenbing Gong, Zhenxiu Hu, Yuande Peng, Pingping Tang, Zuohua Zhu, Chunliang Xie, Li Yan
Lion's Mane, Hericium erinaceus and Tiger Milk, Lignosus rhinocerotis (Higher Basidiomycetes) Medicinal Mushrooms Stimulate Neurite Outgrowth in Dissociated Cells of Brain, Spinal Cord, and Retina: An In Vitro Study
International Journal of Medicinal Mushrooms, Vol.17, 2015, issue 11
Snehlata Samberkar, Kah-Hui Wong, Sivasangkary Gandhi, Jegadeesh Raman, Murali Naidu, Vikineswary Sabaratnam
Medicinal and Antimicrobial Role of the Oyster Culinary-Medicinal Mushroom Pleurotus ostreatus (Higher Basidiomycetes) Cultivated on Banana Agrowastes in India
International Journal of Medicinal Mushrooms, Vol.16, 2014, issue 3
Prashant D. Kunjadia, Parth Y. Pandya, Gaurav V. Sanghvi, Gaurav S. Dave, Pratap N. Mukhopadhyaya, Anju Nagee
Compositional Differences of the Winter Culinary-Medicinal Mushroom, Flammulina velutipes (Agaricomycetes), under Three Types of Light Conditions
International Journal of Medicinal Mushrooms, Vol.19, 2017, issue 3
Erh-Wen Huang, Shu-Yao Tsai, Chun-Ping Lin
Health Benefit of the Pleurotus sajorcaju (Fr.) Singer (Oyster Mushroom) in India
International Journal of Medicinal Mushrooms, Vol.7, 2005, issue 3
Vijaya Khader