Inscrição na biblioteca: Guest
Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa
International Journal of Medicinal Mushrooms
Fator do impacto: 1.423 FI de cinco anos: 1.525 SJR: 0.431 SNIP: 0.716 CiteScore™: 2.6

ISSN Imprimir: 1521-9437
ISSN On-line: 1940-4344

Volume 22, 2020 Volume 21, 2019 Volume 20, 2018 Volume 19, 2017 Volume 18, 2016 Volume 17, 2015 Volume 16, 2014 Volume 15, 2013 Volume 14, 2012 Volume 13, 2011 Volume 12, 2010 Volume 11, 2009 Volume 10, 2008 Volume 9, 2007 Volume 8, 2006 Volume 7, 2005 Volume 6, 2004 Volume 5, 2003 Volume 4, 2002 Volume 3, 2001 Volume 2, 2000 Volume 1, 1999

International Journal of Medicinal Mushrooms

DOI: 10.1615/IntJMedMushrooms.2019031927
pages 979-994

Evaluation of Bioactivities, Phenolic and Metal Content of Ten Wild Edible Mushrooms from Western Black Sea Region of Turkey

Tevfik Ozen
Department of Chemistry, Faculty of Art and Sciences, Ondokuz Mayis University, 55139-Samsun, Turkey
Demet Kizil
Department of Chemistry, Faculty of Art and Sciences, Ondokuz Mayis University, 55139-Samsun, Turkey
Semiha Yenigun
Department of Chemistry, Faculty of Art and Sciences, Ondokuz Mayis University, 55139-Samsun, Turkey
Hasan Cesur
Department of Chemistry, Faculty of Art and Sciences, Ondokuz Mayis University, 55139-Samsun, Turkey
Ibrahim Turkekul
Department of Biology, Faculty of Art and Sciences, Gaziosmanpasa University, 60150-Tokat, Turkey


In this study, we investigated the phenolic profile, metal concentrations, and antioxidant and antimicrobial activities of edible mushrooms collected from Sinop, Turkey: Amanita caesarea, Boletus edulis, Grifola frondosa, Hydnum repandum, Lactarius deliciosus, L. piperatus, L. volemus, Laetiporus sulphureus, Pleurotus ostreatus, and Ramaria flava. The mycochemical contents of R. flava, L. sulphureus, A. caesarea, L. deliciosus, and B. edulis were high. The cobalt (Co), cadmium (Cd), nickel (Ni), and lead (Pb) contents of mushrooms were between < 0.54 and 8.97 ppm. L. deliciosus had effective total antioxidant activity (7990 μmol α-tocopherol eq./g), ABTS·+ (2,2'-azino-bis-(3-ethylbenzthiazoline-6-sulphonic acid)) scavenging activity scavenging activity (EC50:7.87 μg/mL), and free-radical scavenging activity (EC50: 0.018 μg/mL) due to high levels of phenol, flavonoid, β-carotene, and lycopene. B. edulis demonstrated strong reducing power (A0.5: 11.89 μg/mL), inhibition of linoleic acid peroxidation (EC50:0.0016 μg/mL), and H2O2 scavenging activity (EC50: 0.28 μg/mL). A. caesarea and R. flava showed the best metal chelating activity (EC50:44.31 μg/mL) and superoxide anion scavenging activity (EC50:0.18 μg/mL), respectively. Inhibition zone values of A. caesarea extract were detected between 8.1 and 27.1 mm for B. cereus. Our results show that mushrooms are promising dietary sources for natural prevention of many infectious diseases and that they act as antioxidant agents.


  1. Ferreira IC, Barros L, Abreu R. Antioxidants in wild mushrooms. Curr Med Chem. 2009;16(12):1543-60.

  2. Tepe B, Akpulat HA, Sokmen M, Daferera D, Yumrutas O, Aydin E, Polissiou M, Sokmen A. Screening of the antioxidative and antimicrobial properties of the essential oils of Pimpinella anisetum and Pimpinella flabellifolia from Turkey. Food Chem. 2006;97(4):719-24.

  3. Taga Y, Aslan D, Guner G, Kutay FZ. Tibbi laboratuarlarda standardizasyon ve kalite yonetimi. Ankara, Turk Biyokimya Dernegi Yayinlari. 2000;1:106-23.

  4. Cornwell DG, Jones KH, Jiang Z, Lantry LE, Southwell-Keely P, Kohar I, Thomton DE. Cytotoxicity of tocopherols and their quinones in drug-sensitive and multidrug-resistant leukemia cells. Lipids. 1998;33(3):295-301.

  5. Rathee JS, Hassarajani SA, Chattopadhyay S. Antioxidant activity of Mammea longifolia bud extracts. Food Chem. 2006;99(3):436-43.

  6. El Sheikha AF, Hu D-M. How to trace the geographic origin of mushrooms? Trends Food Sci Tech. 2018;78:292-303.

  7. Miles PG, Chang S-T. Mushrooms: cultivation, nutritional value, medicinal effect, and environmental impact. Boca Raton, FL: CRC Press; 2004.

  8. Sadi G, Kaya A, Yalcin HA, Emsen B, Kocabas A, Kartal DI, Altay A. Wild edible mushrooms from Turkey as possible anticancer agents on HepG2 cells together with their antioxidant and antimicrobial properties. Int J Med Mushrooms. 2016;18(1):83-95.

  9. Ozen T, Darcan C, Aktop O, Turkekul I. Screening of antioxidant, antimicrobial activities and chemical contents of edible mushrooms wildly grown in the Black Sea region of Turkey. Comb Chem High T Scr. 2011;14(2):72-84.

  10. Sharma M, Dubey S. Antioxidant, free radical and oxidative stress: a brief overview. Paripex-Indian J Res. 2018;6(11):638-40.

  11. Carocho M, Ferreira IC. A review on antioxidants, prooxidants and related controversy: natural and synthetic compounds, screening and analysis methodologies and future perspectives. Food Chem Toxicol. 2013;51:15-25.

  12. Ramana KV, Reddy A, Majeti N, Singhal SS. Therapeutic potential of natural antioxidants. Oxid Med Cell Longev. 2018;2018:1-3.

  13. Garcia M, Alonso J, Fernandez M, Melgar M. Lead content in edible wild mushrooms in northwest Spain as indicator of environmental contamination. Arch Environ Con Tox. 1998;34(4):330-35.

  14. Bulam S, Ustun NS, Peksen A. Polyporus squamosus (Huds.) Fr. in the Black Sea Region. Turk J Agri-Food Sci Tech. 2018;6(2):183-88.

  15. Ozen T, Turkekul I. Antioxidant activities of Sarcodon imbricatum wildly grown in the black sea region of Turkey. Pharmacognosy Mag. 2010;6(22):89-97.

  16. Singleton V, Rossi JA. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Viticult. 1965;16(3):144-58.

  17. Chang CC, Yang MH, Wen H-M, Chern JC. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J Food Drug Anal. 2002;10(3):178-88.

  18. Tuzen M. Determination of heavy metals in soil, mushroom and plant samples by atomic absorption spectrometry. Micro-chemical J. 2003;74(3):289-97.

  19. Prieto P, Pineda M, Aguilar M. Spectrophotometric quantitation of antioxidant capacity through the formation of a phospho-molybdenum complex: specific application to the determination of vitamin E. Anal Biochem. 1999;269(2):337-41.

  20. Oyaizu M. Studies on products of browning reaction-antioxidative activities of products of browning reaction prepared from glucosamine. Jpn J Nutr. 1986;44:307-315.

  21. Choi CW, Kim SC, Hwang SS, Choi BK, Ahn HJ, Lee MY, Park SH, Kim SK. Antioxidant activity and free radical scavenging capacity between Korean medicinal plants and flavonoids by assay-guided comparison. Plant Sci. 2002;163(6):1161-68.

  22. Dinis TC, Madeira VM, Almeida LM. Action of phenolic derivatives (acetaminophen, salicylate, and 5-aminosalicylate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers. Arch Biochem Biophys. 1994;315(1):161-69.

  23. Nishikimi M, Rao NA, Yagi K. The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochem Bioph Res Co. 1972;46(2):849-54.

  24. Blois MS. Antioxidant determinations by the use of a stable free radical. Nature. 1958;181:1199-200.

  25. Zhao GR, Xiang ZJ, Ye TX, Yuan YJ, Guo ZX. Antioxidant activities of Salvia miltiorrhiza and Panax notoginseng. Food Chem. 2006;99(4):767-74.

  26. Smirnoff N, Cumbes QJ. Hydroxyl radical scavenging activity of compatible solutes. Phytochem. 1989;28(4):1057-60.

  27. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Bio Med. 1999;26(9):1231-37.

  28. Clinical and Laboratory Standard Institute. Performance of standards for antimicrobial disk susceptibility tests; approved standards. Wayne, PA: CLSI; 2009.

  29. Stalons DR, Thornsberry C. Broth-dilution method for determining the antibiotic susceptibility of anaerobic bacteria. Antimicrob Agents Ch. 1975;7(1):15-21.

  30. Sarikurkcu C, Tepe B, Semiz DK, Solak MH. Evaluation of metal concentration and antioxidant activity of three edible mushrooms from Mugla, Turkey. Food Chem Toxicol. 2010;48(5):1230-33.

  31. Chang LW, Yen WJ, Huang SC, Duh PD. Antioxidant activity of sesame coat. Food Chem. 2002;78(3):347-54.

  32. Jayakumar T, Thomas P, Geraldine P. In vitro antioxidant activities of an ethanolic extract of the oyster mushroom, Pleurotus ostreatus. Innov Food Sci Emerg. 2009;10(2):228-34.

  33. Kalogeropoulos N, Yanni AE, Koutrotsios G, Aloupi M. Bioactive microconstituents and antioxidant properties of wild edible mushrooms from the island of Lesvos, Greece. Food Chem Toxicol. 2013;55:378-85.

  34. Vamanu E, Nita S. Antioxidant capacity and the correlation with major phenolic compounds, anthocyanin, and tocopherol content in various extracts from the wild edible Boletus edulis mushroom. Biomed Res Int. 2013;2013:1-11.

  35. Ferreira IC, Baptista P, Vilas-Boas M, Barros L. Free-radical scavenging capacity and reducing power of wild edible mushrooms from northeast Portugal: individual cap and stipe activity. Food Chem. 2007;100(4):1511-16.

  36. Sarikurkcu C, Tepe B, Yamac M. Evaluation of the antioxidant activity of four edible mushrooms from the central Anatolia, Eskisehir, Turkey: Lactarius deterrimus, Suillus collitinus, Boletus edulis, Xerocomus chrysenteron. Biores Technol. 2008;99(14):6651-55.

  37. Palacios I, Lozano M, Moro C, D'arrigo M, Rostagno M, Martinez J, Garci A, Lafuente W, Guillamon A, Villare. Antioxidant properties of phenolic compounds occurring in edible mushrooms. Food Chem. 2011;128(3):674-78.

  38. Turkoglu A, Duru ME, Mercan N, Kivrak I, Gezer K. Antioxidant and antimicrobial activities of Laetiporus sulphureus (Bull.) Murrill. Food Chem. 2007;101(1):267-73.

  39. Fiedor J, Burda K. Potential role of carotenoids as antioxidants in human health and disease. Nutrients. 2014;6(2):466-88.

  40. Isildak O, Turkekul I, Elmastas M, Tuzen M. Analysis of heavy metals in some wild-grown edible mushrooms from the middle black sea region, Turkey. Food Chem. 2004;86(4):547-52.

  41. Bakir T, Unal S, Karadeniz M, Bakir AS. A comparative study on antioxidant properties and metal contents of some edible mushroom samples from Kastamonu, Turkey. J Food Health Sci. 2015;3(4):132-40.

  42. Ekin S, Uzun Y, Demirel K, Bayramoglu M, Kiziltas H. Chemical composition and antioxidant activity of two wild edible mushrooms from Turkey. Int J Med Mushrooms. 2015;17(12):1179-88.

  43. Melgar MJ, Alonso J, Garda MA. Cadmium in edible mushrooms from NW Spain: Bioconcentration factors and consumer health implications. Food Chem Toxicol. 2016;88:13-20.

  44. Liu B, Huang Q, Cai H, Guo X, Wang T, Gui M. Study of heavy metal concentrations in wild edible mushrooms in Yunnan Province, China. Food Chem. 2015;188:294-300.

  45. Huang M, Zeng H, Xu B. Health and risk assessment by ICP-OES of heavy metals and trace minerals in commercial mushrooms marketed in China. Int J Med Mushrooms. 2017;19(7):653-65.

  46. Ayaz FA, Torun H, Ozel A, Col M, Duran C, Sesli E, Colak A. Nutritional value of some wild edible mushrooms from the Black Sea region (Turkey). Turk J Biochem. 2011;36(4):385-93.

  47. Liu J, Jia L, Kan J, Jin C-H. In vitro and in vivo antioxidant activity of ethanolic extract of white button mushroom (Agaricus bisporus). Food Chem Toxicol. 2013;51:310-16.

  48. Chen C, Lu W, Wu G, Lv L, Chen W, Huang L, Wu X, Xu N, Wu Y. Cardioprotective effects of combined therapy with diltiazem and superoxide dismutase on myocardial ischemia-reperfusion injury in rats. Life Sci. 2017;183:50-59.

  49. Gulfin I. Antioxidant activity of food constituents: an overview. Arch Toxicol. 2012;86(3):345-91.

  50. Brugnari T, da Silva PHA, Contato AG, Inacio FD, Nolli MM, Kato CG, Peralta RM, Marques de Souza CG. Effects of cooking and in vitro digestion on antioxidant properties and cytotoxicity of culinary-medicinal mushroom Pleurotus ostreatoroseus (Agaricomycetes). Int J Med Mushrooms. 2018;20(3):259-70.

  51. Khadhri A, Aouadhi C, Aschi-Smiti S, Screening of bioactive compounds of medicinal mushrooms collected on Tunisian territory. Int J Med Mushrooms. 2017;19(2):127-35.

Articles with similar content:

Medicinal Properties of Clitocybe brunneocaperata (Agaricomycetes) from India
International Journal of Medicinal Mushrooms, Vol.22, 2020, issue 4
Panna Das, Ajay Krishna Saha, Kishan Saha, Sanjit Debnath
Comparison of the Composition and Antioxidant Activities of Phenolics from the Fruiting Bodies of Cultivated Asian Culinary-Medicinal Mushrooms
International Journal of Medicinal Mushrooms, Vol.18, 2016, issue 10
Peter Chi Keung Cheung, Shaoling Lin, Lai Tsz Ching, Xinxin Ke
Antidiabetic and Antioxidant Activities of Eight Medicinal Mushroom Species from China
International Journal of Medicinal Mushrooms, Vol.17, 2015, issue 2
Baojun (Bruce) Xu, Tong Wu
The Health Promoting Effects of the Fruiting Bodies Extract of the Peppery Milk Cap Mushroom Lactarius piperatus (Agaricomycetes) from Serbia
International Journal of Medicinal Mushrooms, Vol.22, 2020, issue 4
Aleksandra Marković, Tatjana P. Stanojkovic, Olivera Milosevic-Djordjevic, Darko Grujičić, Nevena Petrović, Jovana Tubic, Marijana Kosanic
Antioxidant Potential and Antioxidant Compounds of Extracts from the Medicinal Sulphur Polypore, Laetiporus sulphureus (Higher Basidiomycetes) in Submerged Cultures
International Journal of Medicinal Mushrooms, Vol.15, 2013, issue 6
Ming-Yeou Lung, Wei Zhong Huang