Inscrição na biblioteca: Guest
Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa
Critical Reviews™ in Eukaryotic Gene Expression
Fator do impacto: 2.156 FI de cinco anos: 2.255 SJR: 0.649 SNIP: 0.599 CiteScore™: 3

ISSN Imprimir: 1045-4403
ISSN On-line: 2162-6502

Volumes:
Volume 30, 2020 Volume 29, 2019 Volume 28, 2018 Volume 27, 2017 Volume 26, 2016 Volume 25, 2015 Volume 24, 2014 Volume 23, 2013 Volume 22, 2012 Volume 21, 2011 Volume 20, 2010 Volume 19, 2009 Volume 18, 2008 Volume 17, 2007 Volume 16, 2006 Volume 15, 2005 Volume 14, 2004 Volume 13, 2003 Volume 12, 2002 Volume 11, 2001 Volume 10, 2000 Volume 9, 1999 Volume 8, 1998 Volume 7, 1997 Volume 6, 1996 Volume 5, 1995 Volume 4, 1994

Critical Reviews™ in Eukaryotic Gene Expression

DOI: 10.1615/CritRevEukarGeneExpr.v19.i1.40
pages 73-88

Molecular Mechanisms in Coupling of Bone Formation to Resorption

T. John Martin
St. Vincent's Institute of Medical Research and University of Melbourne Department of Medicine, Fitzroy, 3065, Victoria, Australia
Jonathan H. Gooi
St. Vincent's Institute of Medical Research and University of Melbourne Department of Medicine, Fitzroy, 3065, Victoria, Australia
Natalie A. Sims
St. Vincent's Institute of Medical Research and University of Melbourne Department of Medicine, Fitzroy, 3065, Victoria, Australia

RESUMO

Bone remodeling is the process of removal and replacement of bone, taking place at many sites throughout the skeleton and regulated mainly by locally generated factors. Its purposes are to repair damaged bone, remove old bone, and facilitate skeletal responses to changes in loading requirements. Cells of the osteoblast lineage control the formation and activity of osteoclasts, which are responsible for initiation and execution of resorption at remodeling sites. The bone resorbed by osteoclasts is replaced through the differentiation and activity of osteoblasts. The consequent formation must match closely the amount of bone that is resorbed at each site. This coupling of the two processes is essential for bone balance. Both resorption products and osteoclast-derived factors contribute to the coupling of bone formation to resorption in bone remodeling. This review considers the molecular mechanisms and intercellular communication processes involved in remodeling and coupling.


Articles with similar content:

Control of Osteoclast Differentiation
Critical Reviews™ in Eukaryotic Gene Expression, Vol.8, 1998, issue 1
G. David Roodman, Sakamuri V. Reddy
Mechanosensing and Mechanochemical Transduction: How Is Mechanical Energy Sensed and Converted Into Chemical Energy in an Extracellular Matrix?
Critical Reviews™ in Biomedical Engineering, Vol.31, 2003, issue 4
Lorraine M. Siperko, Frederick H. Silver
Regulatory Controls for Osteoblast Growth and Differentiation: Role of Runx/Cbfa/AML Factors
Critical Reviews™ in Eukaryotic Gene Expression, Vol.14, 2004, issue 1&2
Sayyed Kaleem Zaidi, Janet L. Stein, Jane B. Lian, Martin Montecino, Andre J. van Wijnen, Amjad Javed, Gary Stein, Christopher Lengner
Hdac-Mediated Control of Endochondral and Intramembranous Ossification
Critical Reviews™ in Eukaryotic Gene Expression, Vol.21, 2011, issue 2
Meghan E. McGee-Lawrence, Elizabeth W. Bradley, Jennifer J. Westendorf
Critical Aspects of Tissue-Engineered Therapy for Bone Regeneration
Critical Reviews™ in Eukaryotic Gene Expression, Vol.11, 2001, issue 1-3
Shelly R. Winn, Jeffrey Hollinger, Bruce Doll, Charles Sfeir, John Huard