Inscrição na biblioteca: Guest
Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa
Critical Reviews™ in Eukaryotic Gene Expression
Fator do impacto: 1.841 FI de cinco anos: 1.927 SJR: 0.649 SNIP: 0.516 CiteScore™: 1.96

ISSN Imprimir: 1045-4403
ISSN On-line: 2162-6502

Critical Reviews™ in Eukaryotic Gene Expression

DOI: 10.1615/CritRevEukaryotGeneExpr.v14.i12.20
10 pages

Development of Cell Cultures with Competency for Contributing to the Zebrafish Germ Line

Lianchun Fan
Department of Animal Sciences, Purdue University, West Lafayette, IN 47907
Annette Alestrom
Department of Biochemistry, Norwegian School of Veterinary Science, Oslo Norway
Peter Alestrom
Department of Biochemistry, Norwegian School of Veterinary Science, Oslo Norway
Paul Collodi
Department of Animal Sciences, Purdue University, West Lafayette, IN 47907

RESUMO

The zebrafish is an established model for the genetic analysis of vertebrate development. Forward-genetic screens have generated thousands of mutations, and antisense-based methods have been used to transiently knockdown gene expression during embryogenesis. Although these methods have made the zebrafish a valuable system for the identification and functional characterization of developmentally important genes, one deficiency of the zebrafish model is the absence of methods to introduce targeted mutations to generate knockout lines offish. Application of gene-targeting methods has been limited in nonmurine species due to the absence of germ-line competent embryonic stem (ES) cell lines. Recently, progress was made in addressing this problem by the derivation of zebrafish embryo cell lines that remain pluripotent and germ-line competent for multiple passages in culture. Zebrafish germ-line chimeras were generated using cultures derived from embryos at two different developmental stages, and targeted insertion of vector DNA by homologous recombination was demonstrated in both cultures. Several strategies are being used to optimize the production and identification of germ-line chimeras. The zebrafish embryo cell culture system should provide the basis of a gene-targeting approach that will complement other genetic strategies and improve the utility of the zebrafish model for studies of development and disease.


Articles with similar content:

Signaling Mucins: The New Kids on the MARK Block
Critical Reviews™ in Eukaryotic Gene Expression, Vol.17, 2007, issue 3
Paul J. Cullen
Pharmacogenomics and Its Potential Impact on Drug and Formulation Development
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.22, 2005, issue 5
Diane J. Burgess, Karin Regnstrom
The Ideological Frame of the Genetic Basis of Cancer: The Important Role of miRNAs
Critical Reviews™ in Oncogenesis, Vol.22, 2017, issue 3-4
Vassilis Zoumpourlis, Ioannis Christodoulou, Eleni Skourti, Maria Goulielmaki, Spiros Vlahopoulos
Genetics and Genomics of Osteoclast Differentiation: Integrating Cell Signaling Pathways and Gene Networks
Critical Reviews™ in Eukaryotic Gene Expression, Vol.16, 2006, issue 3
A. Ian Cassady, Tricia Lusby, Sudarshana M. Sharma, Rong Hu, Michael C. Ostrowski, David A. Hume, Nicolas Meadows, Agnieszka Bronisz, Barbara Fletcher
Epigenetic Control of Tumor Suppression
Critical Reviews™ in Eukaryotic Gene Expression, Vol.17, 2007, issue 4
Keith D. Robertson, Stela S. Palii