Inscrição na biblioteca: Guest
Critical Reviews™ in Eukaryotic Gene Expression

Publicou 6 edições por ano

ISSN Imprimir: 1045-4403

ISSN On-line: 2162-6502

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.6 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 2.2 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.3 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00058 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.33 SJR: 0.345 SNIP: 0.46 CiteScore™:: 2.5 H-Index: 67

Indexed in

Diagnostic, Prognostic, and Therapeutic Potencies of Circulating miRNAs in Acute Myocardial Infarction

Volume 29, Edição 4, 2019, pp. 333-342
DOI: 10.1615/CritRevEukaryotGeneExpr.2019028211
Get accessGet access

RESUMO

Acute myocardial infarction (AMI), or heart attack, is a major public health problem, responsible for 3 to 4 million deaths each year. Despite great improvements in diagnostic and therapeutic strategies, it remains one of the most lethal types of heart disease. Therefore, the identification of molecular mechanisms involved in AMI pathogenesis might help us to develop new therapeutic and diagnostic approaches. MicroRNAs (21- to 24-nucleotide noncoding RNAs) have been shown to play important roles in AMI pathogenesis by affecting multiple cellular processes, including cardiac cell proliferation, apoptosis, survival, regeneration, and autophagy. Thus, targeting microRNAs might have great clinical significance for the treatment of AMI patients. Moreover, aberrant miRNA expression patterns can serve as an ideal diagnostic and prognostic biomarker for AMI patients. This review aims to give an overview of recent studies that have addressed the therapeutic potency of microRNAs in AMI. We also summarize the potential use of microRNAs as diagnostic and prognostic biomarkers for AMI.

Referências
  1. Anderson JL, Morrow DA. Acute myocardial infarction. New Engl J Med. 2017;376(21):2053-64. Epub 2017/05/26. doi: 10.1056/NEJMra1606915. PubMed PMID: 28538121.

  2. Boersma E, Mercado N, Poldermans D, Gardien M, Vos 15. J, Simoons ML. Acute myocardial infarction. Lancet. 2003;361(9360):847-58.

  3. White HD, Chew DP. Acute myocardial infarction. Lancet. 2008;372(9638):570-84.

  4. Amsterdam EA, Wenger NK, Brindis RG, Casey DE, 17 Ganiats TG, Holmes DR, Jaffe AS, Jneid H, Kelly . RF, Kontos MC. 2014 AHA/ACC guideline for the management of patients with non-ST-elevation acute 18 coronary syndromes: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am College Cardiol. 2014;64(24):e139-e228.

  5. Antman E, Bassand J-P, Klein W, Ohman M, Sendon JLL, 19 Ryden L, Simoons M, Tendera M. Myocardial infarction redefined-a consensus document of the Joint European Society of Cardiology/American College of Cardiology 20. committee for the redefinition of myocardial infarction: the Joint European Society of Cardiology/American College of Cardiology Committee. J Am College Cardiol. 2000;36(3):959-69.

  6. Jaffe AS, Ravkilde J, Roberts R, Naslund U, Apple FS, Galvani M, Katus H. It's time for a change to a troponin 21. standard. J Am Heart Assoc. 2000;102(11).

  7. Finsterer J, Stollberger C, Krugluger W. Cardiac and noncardiac, particularly neuromuscular, disease with troponin-T positivity. Neth J Med. 2007;65(8):289-95. 22.

  8. van der Linden N, Cornelis T, Kimenai DM, Klinkenberg LJ, Hilderink JM, Luck S, Litjens EJ, Peeters FE, Streng AS, Breidthardt T. Origin of cardiac troponin T elevations in chronic kidney disease. Circulation. 23. 2017;136(11):1073-5.

  9. Goretti E, Wagner DR, Devaux Y. miRNAs as biomarkers of myocardial infarction: a step forward towards personalized medicine? Trends Mol Med. 2014;20(12):716-25.

  10. Wronska A, Kurkowska-Jastrzebska I, Santulli G. Application of microRNAs in diagnosis and treatment of cardiovascular disease. Acta Physiologica. 2015;213(1):60-83.

  11. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281-97.

  12. Ebrahimi S, Hashemy SI. MicroRNA-mediated redox regulation modulates therapy resistance in cancer cells: clinical perspectives. Cell Oncol (Dordr). 2019. Epub 2019/01/16. doi: 10.1007/s13402-018-00421-z. PubMed PMID: 30645730.

  13. Lesizza P, Prosdocimo G, Martinelli V, Sinagra G, Zacchigna S, Giacca M. Single-dose intracardiac injection of pro-regenerative microRNAs improves cardiac function after myocardial infarction: novelty and significance. Circ Res. 2017;120(8):1298-304.

  14. Liu X, Hong Q, Wang Z, Yu Y, Zou X, Xu L. MiR-21 inhibits autophagy by targeting Rab 11a in renal ischemia/ reperfusion. Exper Cell Res. 2015;338(1):64-9.

  15. Tao L, Bei Y, Zhou Y, Xiao J, Li X. Non-coding RNAs in cardiac regeneration. Oncotarget. 2015;6(40):42613.

  16. Weber JA, Baxter DH, Zhang S, Huang DY, Huang KH, Lee MJ, Galas DJ, Wang K. The microRNA spectrum in 12 body fluids. Clin Chem. 2010;56(11):1733-41.

  17. Taylor DD, Gercel-Taylor C. MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol. 2008;110(1):13-21.

  18. Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, Peterson A, Noteboom J, O'Briant KC, Allen A. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci. 2008;105(30):10513-8.

  19. Schwarzenbach H, Hoon DS, Pantel K. Cell-free nucleic acids as biomarkers in cancer patients. Nature Rev Cancer. 2011;11(6):426.

  20. Hanke M, Hoefig K, Merz H, Feller AC, Kausch I, Jocham D, Warnecke JM, Sczakiel G, editors. A robust methodology to study urine microRNA as tumor marker: microRNA-126 and microRNA-182 are related to urinary bladder cancer. In: Uro logic oncology: Seminars and original investigations. Elsevier; 2010.

  21. Michael A, Bajracharya SD, Yuen PS, Zhou H, Star RA, Illei GG, Alevizos I. Exosomes from human saliva as a source of microRNA biomarkers. Oral Diseases. 2010;16(1):34-8.

  22. Yu L, Todd NW, Xing L, Xie Y, Zhang H, Liu Z, Fang H, Zhang J, Katz RL, Jiang F. Early detection of lung adenocarcinoma in sputum by a panel of microRNA markers. Int J Cancer. 2010;127(12):2870-8.

  23. Nouraee N, Mowla SJ. miRNA therapeutics in cardiovascular diseases: promises and problems. Front Gen. 2015;6:232.

  24. Akat KM, Moore-McGriff DV, Morozov P, Brown M, Gogakos T, Da Rosa JC, Mihailovic A, Sauer M, Ji R, Ramarathnam A. Comparative RNA-sequencing analysis of myocardial and circulating small RNAs in human heart failure and their utility as biomarkers. Proc Natl Acad Sci. 2014;111(30):11151-6.

  25. Wang F, Long G, Zhao C, Li H, Chaugai S, Wang Y, Chen C, Wang DW. Atherosclerosis-related circulating miRNAs as novel and sensitive predictors for acute myocardial infarction. PLoS One. 2014;9(9):e105734.

  26. Coskunpinar E, Cakmak H, Kalkan A, Tiryakioglu NO, 40. Araz T, Ongen Z. Is plasma microRNA-1909-5p a new potential biomarker for acute myocardial infarction. Atherosclerosis. 2016;252:e82.

  27. Ai J, Zhang R, Li Y, Pu J, Lu Y, Jiao J, Li K, Yu B, Li Z, Wang R. Circulating microRNA-1 as a potential novel biomarker for acute myocardial infarction. Biochem Biophys Res Commun. 2010;391(1):73-7.

  28. Cheng Y, Tan N, Yang J, Liu X, Cao X, He P, Dong X, Qin S, Zhang C. A translational study of circulating cell-free microRNA-1 in acute myocardial infarction. Clin Sci. 2010;119(2):87-95.

  29. Wang R, Li N, Zhang Y, Ran Y, Pu J. Circulating microRNAs are promising novel biomarkers of acute 43. myocardial infarction. Internal Med. 2011;50(17):1789-95.

  30. Zhu L, Liu F, Xie H, Feng J. Diagnostic performance of microRNA-133a in acute myocardial infarction: a meta-analysis. Cardiol J. 2018;25(2):260-7.

  31. Zhang Y, Liu Y, Liu T, Zhang H, Yang S. Plasma microRNA-21 is a potential diagnostic biomarker of acute myocardial infarction. Eur Rev Med Pharmacol Sci. 2016;20(2):323-9.

  32. Adachi T, Nakanishi M, Otsuka Y, Nishimura K, Hirokawa G, Goto Y, Nonogi H, Iwai N. Plasma microRNA 499 as a biomarker of acute myocardial infarction. Clin Chem. 2010;56(7):1183-5.

  33. Xiao J, Shen B, Li J, Lv D, Zhao Y, Wang F, Xu J. Serum microRNA-499 and microRNA-208a as biomarkers of acute myocardial infarction. Int J Clin Exper Med. 2014;7(1):136.

  34. Zhang R, Lan C, Pei H, Duan G, Huang L, Li L. Expression of circulating miR-486 and miR-150 in patients with acute myocardial infarction. BMC Cardiovasc Disorders. 2015;15(1):51.

  35. Wang G-K, Zhu J-Q, Zhang J-T, Li Q, Li Y, He J, Qin Y-W, Jing Q. Circulating microRNA: a novel potential 48. biomarker for early diagnosis of acute myocardial infarction in humans. Eur Heart J. 2010;31(6):659-66.

  36. Bai R, Yang Q, Xi R, Li L, Shi D, Chen K. miR-941 as a promising biomarker for acute coronary syndrome. BMC Cardiovasc Disorders. 2017;17(1):227.

  37. Li C, Chen X, Huang J, Sun Q, Wang L. Clinical impact of circulating miR-26a, miR-191, and miR-208b in plasma of patients with acute myocardial infarction. Eur 49. J Med Res. 2015;20(1):58.

  38. Olivieri F, Antonicelli R, Lorenzi M, D'Alessandra Y, Lazzarini R, Santini G, Spazzafumo L, Lisa R, La Sala L, Galeazzi R. Diagnostic potential of circulating miR-499-5p in elderly patients with acute non ST-elevation myocardial infarction. Int J Cardiol. 2013;167(2):531-6.

  39. Long G, Wang F, Duan Q, Chen F, Yang S, Gong W, Wang Y, Chen C, Wang DW. Human circulating microRNA-1 and microRNA-126 as potential novel indicators for acute myocardial infarction. Int J Bio Sci. 2012;8(6):811.

  40. Li C, Fang Z, Jiang T, Zhang Q, Liu C, Zhang C, Xiang Y Serum microRNAs profile from genome-wide serves as a fingerprint for diagnosis of acute myocardial infarction and angina pectoris. BMC Med Genom. 2013;6(1):16.

  41. Li L-M, Cai W-B, Ye Q, Liu J-M, Li X, Liao X-X. Comparison of plasma microRNA-1 and cardiac troponin T in early diagnosis of patients with acute myocardial infarction. World J Emergency Med. 2014;5(3):182.

  42. Zhao C, Cheng G, He R, Hong Y, Wan Q, Wang Z, Pan Z. Analysis and clinical significance of microRNA-499 expression levels in serum of patients with acute myocardial infarction. Genet Mol Res. 2015;14(2):4027-34.

  43. Gidlof O, Smith JG, Miyazu K, Gilje P, Spencer A, Blomquist S, Erlinge D. Circulating cardio-enriched microRNAs are associated with long-term prognosis following myocardial infarction. BMC Cardiovasc Disorders. 2013;13(1):12.

  44. Zhang L, Han X, Yin L, Zhang H, Wang Y, Li B. Plasma levels of microRNA-499 in patients with acute myocardial infarction: a meta-analysis. Int J Clin Exper Med. 2016;9(7):14564-7.

  45. Zhang M, Cheng Y-J, Sara JD, Liu L-J, Liu L-P, Zhao X, Gao H. Circulating microRNA-145 is associated with acute myocardial infarction and heart failure. Chinese Med J. 2017;130(1):51.

  46. Li MX, Liu XM, Zhang XF, Zhang JF, Wang WL, Zhu Y, Dong J, Cheng JW, Liu ZW, Ma L. Prognostic role of neutrophil-to-lymphocyte ratio in colorectal cancer: a systematic review and meta-analysis. Int J Cancer. 2014;134(10):2403-13.

  47. Matsumoto S, Sakata Y, Nakatani D, Suna S, Mizuno H, Shimizu M, Usami M, Sasaki T, Sato H, Kawahara Y. A subset of circulating microRNAs are predictive for cardiac death after discharge for acute myocardial infarction. Biochem Biophys Res Commun. 2012;427(2):280-4.

  48. Zhang M, Wu JF, Chen WJ, Tang SL, Mo ZC, Tang YY, Li Y, Wang JL, Liu XY, Peng J, Chen K, He PP, Lv YC, Ouyang XP, Yao F, Tang DP, Cayabyab FS, Zhang DW, Zheng XL, Tian GP, Tang CK. MicroRNA-27a/b regulates cellular cholesterol efflux, influx and esterification/hydrolysis in THP-1 macrophages. Atherosclerosis. 2014;234(1):54-64. doi: 10.1016/j. atherosclerosis.2014.02.008. PubMed PMID: 24608080.

  49. Matsumoto S, Sakata Y, Nakatani D, Suna S, Usami M, Hara M, Kitamura T, Hamasaki T, Nanto S, Kawahara Y. Circulating p53-responsive microRNAs are predictive indicators of heart failure after acute myocardial infarction. Circ Res. 2013;113(3):322-6.

  50. Zile MR, Mehurg SM, Arroyo JE, Stroud RE, DeSantis 62. SM, Spinale FG. Relationship between the temporal profile of plasma microRNA and left ventricular remodeling in patients after myocardial infarction: clinical perspective. Circ: Cardiovasc Gen. 2011;4(6):614-9. 63.

  51. Devaux Y, Vausort M, McCann GP, Zangrando J, Kelly D, Razvi N, Zhang L, Ng LL, Wagner DR, Squire IB. MicroRNA-150: a novel marker of left ventricular remodeling after acute myocardial infarction. Circ: Cardiovasc Gen. 2013;6(3):290-8.

  52. Yuan L, Liu X, Chen F, Zhang L, Chen X, Huang Q, Wu D, Yang C, Han Z. Diagnostic and prognostic value of circulating microRNA-133a in patients with acute myocardial infarction. Clin Lab. 2016;62(7):1233-41.

  53. Coskunpinar E, Cakmak HA, Kalkan AK, Tiryakioglu NO, Erturk M, Ongen Z. Circulating miR-221-3p as a novel marker for early prediction of acute myocardial infarction. Gene. 2016;591(1):90-6.

  54. Devaux Y, Vausort M, McCann GP, Kelly D, Collignon 66. O, Ng LL, Wagner DR, Squire IB. A panel of 4 microRNAs facilitates the prediction of left ventricular contractility after acute myocardial infarction. PLoS One. 2013;8(8):e70644.

  55. Liu J, Sun F, Wang Y, Yang W, Xiao H, Zhang Y, Lu R, Zhu H, Zhuang Y, Pan Z. Suppression of microRNA-16 protects against acute myocardial infarction by reversing beta2-adrenergic receptor down-regulation in rats. Oncotarget. 2017;8(12):20122.

  56. Liang W, Guo J, Li J, Bai C, Dong Y. Downregulation of miR-122 attenuates hypoxia/reoxygenation (H/R)-induced myocardial cell apoptosis by upregulating GATA-4. Biochem Biophys Res Commun. 2016;478(3):1416-22.

  57. Ren X-P, Wu J, Wang X, Sartor MA, Qian J, Jones K, Nicolaou P, Pritchard TJ, Fan G-C. MicroRNA-320 is involved in the regulation of cardiac ischemia/reperfusion 70. injury by targeting heat-shock protein 20. Circulation. 2009;119(17):2357-66.

  58. Song C-L, Liu B, Diao H-Y, Shi Y-F, Zhang J-C, Li Y-X, Liu N, Yu Y-P, Wang G, Wang J-P. Down-regulation of microRNA-320 suppresses cardiomyocyte apoptosis and protects against myocardial ischemia and reperfusion injury by targeting IGF-1. Oncotarget. 2016;7(26):39740.

  59. Wang X, Ha T, Liu L, Zou J, Zhang X, Kalbfleisch J, Gao X, Williams D, Li C. Increased expression of microRNA-72. 146a decreases myocardial ischaemia/reperfusion injury. Cardiovasc Res. 2012;97(3):432-42.

  60. Liu Z, Ye P, Wang S, Wu J, Sun Y, Zhang A, Ren L, Cheng C, Huang X, Wang K. MicroRNA-150 protects the heart from injury by inhibiting monocyte accumulation in a mouse model of acute myocardial infarction: clinical perspective. Circ: Genom Precision Med. 2015;8(1):11-20.

  61. Wang K, Liu C-Y, Zhou L-Y, Wang J-X, Wang M, Zhao B, Zhao W-K, Xu S-J, Fan L-H, Zhang X-J. APF lncRNA regulates autophagy and myocardial infarction by targeting miR-188-3p. Nature Commun. 2015;6:6779.

  62. Zhou C, Cui Q, Su G, Guo X, Liu X, Zhang J. MicroRNA-208b alleviates post-infarction myocardial fibrosis in a rat model by inhibiting GATA4. Med Sci Monitor: Int Med J Exper Clin Res. 2016;22:1808.

  63. Wang Y, Ouyang M, Wang Q, Jian Z. MicroRNA-142-3p inhibits hypoxia/reoxygenation-induced apoptosis and fibrosis of cardiomyocytes by targeting high mobility group box 1. Int J Mol Med. 2016;38(5):1377-86.

  64. Wang J-X, Zhang X-J, Li Q, Wang K, Wang Y, Jiao J-Q, Feng C, Teng S, Zhou L-Y, Gong Y. MicroRNA-103/107 regulate programmed necrosis and myocardial ischemia/ reperfusion injury through targeting FADD novelty and significance. Circ Res. 2015;117(4):352-63.

  65. Wang K, Liu F, Zhou L, Ding S, Long B, Liu C, Sun T, Fan Y, Sun L, Li P. miR-874 regulates myocardial necrosis by targeting caspase-8. Cell Death Disease. 2013;4(7):e709.

  66. Eulalio A, Mano M, Dal Ferro M, Zentilin L, Sinagra G, Zacchigna S, Giacca M. Functional screening identifies miRNAs inducing cardiac regeneration. Nature. 2012;492(7429):376.

  67. Izarra A, Moscoso I, Levent E, Canon S, Cerrada I, Diez-Juan A, Blanca V, Nunez-Gil I-J, Valiente I, Ruiz-Sauri A. miR-133a enhances the protective capacity of cardiac progenitor cells after myocardial infarction. Stem Cell Reports. 2014;3(6):1029-42.

  68. Li Y, Lu J, Bao X, Wang X, Wu J, Li X, Hong W. MiR-499-5p protects cardiomyocytes against ischaemic injury via anti-apoptosis by targeting PDCD4. Oncotarget. 2016;7(24):35607.

  69. Xu H, Cao H, Zhu G, Liu S, Li H. Overexpression of microRNA-145 protects against rat myocardial infarction through targeting PDCD4. Am J Trans Res. 2017;9(11):5003.

  70. Wang K, An T, Zhou L, Liu C, Zhang X, Feng C, Li P. E2F1-regulated miR-30b suppresses cyclophilin D and protects heart from ischemia/reperfusion injury and necrotic cell death. Cell Death Differentiation. 2015;22(5):743.

  71. Cheng Y, Zhu P, Yang J, Liu X, Dong S, Wang X, Chun B, Zhuang J, Zhang C. Ischaemic preconditioning-regulated miR-21 protects heart against ischaemia/reperfusion injury via anti-apoptosis through its target PDCD4. Cardiovasc Res. 2010;87(3):431-9.

  72. Tang Y, Wang Y, Park K-M, Hu Q, Teoh J-P, Broskova Z, Ranganathan P, Jayakumar C, Li J, Su H. MicroRNA-150 protects the mouse heart from ischaemic injury by regulating cell death. Cardiovasc Res. 2015;106(3):387-97.

  73. Yang X, Qin Y, Shao S, Yu Y, Zhang C, Dong H, Lv G, Dong S. MicroRNA-214 inhibits left ventricular remodeling in an acute myocardial infarction rat model by suppressing cellular apoptosis via the phosphatase and tensin homolog (PTEN). Int Heart J. 2016;57(2):247-50.

  74. Li R, Geng H-H, Xiao J, Qin X-T, Wang F, Xing J-H, Xia Y-F, Mao Y, Liang J-W, Ji X-P. miR-7a/b attenuates post-myocardial infarction remodeling and protects H9c2 cardiomyoblast against hypoxia-induced apoptosis involving Sp1 and PARP-1. Sci Rep. 2016;6:29082.

  75. Bayoumi AS, Park K-M, Wang Y, Teoh J-P, Aonuma T, Tang Y, Su H, Weintraub NL, Kim I-M. A carvedilol-responsive microRNA, miR-125b-5p, protects the heart from acute myocardial infarction by repressing pro-apoptotic bak1 and klf13 in cardiomyocytes. J Mol Cellular Cardiol. 2018;114:72-82.

  76. Bayoumi AS, Teoh J-P, Aonuma T, Yuan Z, Ruan X, Tang Y, Su H, Weintraub NL, Kim I-M. MicroRNA-532 protects the heart in acute myocardial infarction, and represses prss23, a positive regulator of endothelial-to-mesenchymal transition. Cardiovasc Res. 2017;113(13):1603-14.

  77. Huang W, Tian S-S, Hang P-Z, Sun C, Guo J, Du Z-M. Combination of microRNA-21 and microRNA-146a attenuates cardiac dysfunction and apoptosis during acute myocardial infarction in mice. Mol Ther-Nucl Acids. 2016;5(3): e296.

  78. Wei D-Z, Lin C, Huang Y-Q, Wu L-P, Huang M-Y. Ellagic acid promotes ventricular remodeling after acute myocardial infarction by up-regulating miR-140-3p. Biomed Pharmacother. 2017;95:983-9.

  79. Wu Z, Qi Y, Guo Z, Li P, Zhou D. miR-613 suppresses ischemia-reperfusion-induced cardiomyocyte apoptosis by targeting the programmed cell death 10 gene. Biosci Trends. 2016;10(4):251-7.

CITADO POR
  1. Ebrahimi Safieh, Javid Hosein, Alaei Amin, Hashemy Seyed Isaac, New insight into the role of substance P/neurokinin‐1 receptor system in breast cancer progression and its crosstalk with microRNAs , Clinical Genetics, 98, 4, 2020. Crossref

  2. Peña-Oyarzún Daniel, Garrido-Moreno Valeria, Garrido-Olivares Luis, Corbalan Ramon, Criollo Alfredo, Lavandero Sergio, Autophagy in the cardiovascular system, in Autophagy in Health and Disease, 2022. Crossref

  3. Wang Kai, Li Zhongming, Ma Wenjie, Sun Yan, Liu Xianling, Qian Lijun, Hong Jian, Lu Dasheng, Zhang Jing, Xu Di, Construction of miRNA-mRNA network reveals crucial miRNAs and genes in acute myocardial infarction, The Journal of Biomedical Research, 35, 6, 2021. Crossref

  4. Zhang Yuquan, Liu Shuzhu, Ding Limin, Wang Dawei, Li Qiangqiang, Li Dongdong, Circ_0030235 knockdown protects H9c2 cells against OGD/R-induced injury via regulation of miR-526b, PeerJ, 9, 2021. Crossref

  5. Xiao Shengjue, Zhou Yufei, Wu Qi, Liu Qiaozhi, Chen Mengli, Zhang Tiantian, Zhu Hong, Liu Jie, Yin Ting, Pan Defeng, FCER1G and PTGS2 Serve as Potential Diagnostic Biomarkers of Acute Myocardial Infarction Based on Integrated Bioinformatics Analyses, DNA and Cell Biology, 40, 8, 2021. Crossref

  6. Scărlătescu Alina Ioana, Micheu Miruna Mihaela, Popa-Fotea Nicoleta-Monica, Dorobanțu Maria, MicroRNAs in Acute ST Elevation Myocardial Infarction—A New Tool for Diagnosis and Prognosis: Therapeutic Implications, International Journal of Molecular Sciences, 22, 9, 2021. Crossref

  7. Tanase Daniela Maria, Gosav Evelina Maria, Ouatu Anca, Badescu Minerva Codruta, Dima Nicoleta, Ganceanu-Rusu Ana Roxana, Popescu Diana, Floria Mariana, Rezus Elena, Rezus Ciprian, Current Knowledge of MicroRNAs (miRNAs) in Acute Coronary Syndrome (ACS): ST-Elevation Myocardial Infarction (STEMI), Life, 11, 10, 2021. Crossref

  8. Venugopal Priyanka, Balakrishnan Karthikeyan, Damal Kandadai Sriram, George Melvin, Usefullness of MicroRNAs in Predicting the Clinical Outcome of Patients with Acute Myocardial Infarction During Follow-Up: A Systematic Review, Genetic Testing and Molecular Biomarkers, 26, 5, 2022. Crossref

Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa Políticas de preços e assinaturas Begell House Contato Language English 中文 Русский Português German French Spain