Inscrição na biblioteca: Guest
Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa
Critical Reviews™ in Eukaryotic Gene Expression
Fator do impacto: 1.841 FI de cinco anos: 1.927 SJR: 0.649 SNIP: 0.516 CiteScore™: 1.96

ISSN Imprimir: 1045-4403
ISSN On-line: 2162-6502

Critical Reviews™ in Eukaryotic Gene Expression

DOI: 10.1615/CritRevEukaryotGeneExpr.v15.i1.50
pages 75-92

Apoptosis in Membranous Bone Formation: Role of Fibroblast Growth Factor and Bone Morphogenetic Protein Signaling

Olivia Fromigue
Laboratory of Osteoblast Biology and Pathology, INSERM Unite 606, Hopital Lariboisiere, 2 rue Ambroise Pare, 75475 Paris Cedex 10, France
Dominique Modrowski
Laboratory of Osteoblast Biology and Pathology, INSERM Unite 606, Hopital Lariboisiere, 2 rue Ambroise Pare, 75475 Paris Cedex 10, France
Pierre J. Marie
Laboratory of Osteoblast Biology and Pathology, INSERM Unite 606, Hopital Lariboisiere, 2 rue Ambroise Pare, 75475 Paris Cedex 10, France

RESUMO

Membranous ossification occurs by the condensation of mesenchymal cells followed by their progressive differentiation into osteoblasts that form a mineralized matrix in ossification centers. The balance between proliferating and differentiated osteogenic cells at the suture areas between calvarial bones is essential for the control of suture maintenance and membranous bone formation. The mechanisms of regulation of cell apoptosis in suture areas begin to be understood. Fibroblast growth factor (FGF) and bone morphogenetic protein (BMP) are important regulators of mesenchymal, preosteoblast, and osteoblast apoptosis in suture areas. Perturbations in FGF or BMP signaling lead to alter the number of apoptotic osteogenic cells, resulting in premature or delayed suture closure. Recent data indicate that FGF signaling downregulates preosteoblast apoptosis, thereby preventing premature fusion of adjacent mineralizing extremities. In contrast, continuous FGF signaling or constitutive FGF receptor activation, as well as BMP signaling, upregulate osteoblast apoptosis. Additionally, multiple signaling mechanisms, including PI3K and PKC, appear to be involved in the control of calvarial osteoblast apoptosis by FGF and BMP. These mechanisms allow a fine control of the number of functional bone-forming cells and, thereby, the normal progression of membranous bone formation.


Articles with similar content:

Signaling Networks that Control the Lineage Commitment and Differentiation of Bone Cells
Critical Reviews™ in Eukaryotic Gene Expression, Vol.19, 2009, issue 1
Shuying Yang, Wei Chen, Carrie S. Soltanoff, Yi-Ping Li
Complex Interplay Between Aging and Cancer: Role of TGF-β Signaling
Critical Reviews™ in Oncogenesis, Vol.22, 2017, issue 3-4
Panagiotis Papageorgis
The Role of BMP2 Signaling in the Skeleton
Critical Reviews™ in Eukaryotic Gene Expression, Vol.21, 2011, issue 2
Vivianne Chappuis, Giuseppe Intini, Luciane P. Capelo, Shoichiro Kokabu, Dorothy Pazin, Jonathan W. Lowery, Vicki Rosen
FGF Signaling in Craniofacial Biological Control and Pathological Craniofacial Development
Critical Reviews™ in Eukaryotic Gene Expression, Vol.20, 2010, issue 4
Nan E. Hatch
Brain-Derived Neurotrophic Factor Activation of TrkB Protects Neurons from HIV-1/gp120-Induced Cell Death
Critical Reviews™ in Neurobiology, Vol.16, 2004, issue 1&2
Alessia Bachis, Italo Mocchetti