Inscrição na biblioteca: Guest
Atomization and Sprays

Publicou 12 edições por ano

ISSN Imprimir: 1044-5110

ISSN On-line: 1936-2684

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.2 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.8 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.3 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00095 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.28 SJR: 0.341 SNIP: 0.536 CiteScore™:: 1.9 H-Index: 57

Indexed in

DEPENDENCE OF SPRAYING PERFORMANCE ON THE INTERNAL FLOW PATTERN IN EFFERVESCENT ATOMIZERS

Volume 11, Edição 6, 2001, 22 pages
DOI: 10.1615/AtomizSpr.v11.i6.80
Get accessGet access

RESUMO

The effect of the flow patterns inside the mixing chamber on the atomization performance of largeorifice (> 1.2 mm) effervescent atomizers for the low injection pressure range (< 4 bar) was examined experimentally. The transparent mixing chamber has a rectangular cross section (8 mm × 2 mm). The parameters tested were the air/liquid ratio (ALR), injection pressure, and the nozzle orifice diameter. Three different flow regimes were observed: bubbly, annular, and intermittent flows. In the bubbly flow regime, the discharged air/liquid mixture disintegrates into drops through the processes of bubble expansion and ligament breakup. On the other hand, in the annular flow regime, the liquid annulus disintegrates into fine drops by aerodynamic interaction due to high relative velocity between the core gas and the liquid film. In the intermittent flow regime, the bubble expansion/ligament disintegration and the annulus disintegration modes appear alternately. Transition criteria between the two-phase flow patterns within the mixing chamber are proposed based on the drift flux model. Finally, a drop size correlation encompassing all those flow regimes is proposed.

CITADO POR
  1. Rajamanickam Kuppuraj, Roy Swapneel, Basu Saptarshi, Novel Fuel Injection Systems for High-Speed Combustors, in Droplets and Sprays, 2018. Crossref

Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa Políticas de preços e assinaturas Begell House Contato Language English 中文 Русский Português German French Spain