Inscrição na biblioteca: Guest
Atomization and Sprays

Publicou 12 edições por ano

ISSN Imprimir: 1044-5110

ISSN On-line: 1936-2684

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.2 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.8 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.3 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00095 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.28 SJR: 0.341 SNIP: 0.536 CiteScore™:: 1.9 H-Index: 57

Indexed in

EXPERIMENTS ON AIR-ASSIST SPRAY AND SPRAY FLAMES

Volume 11, Edição 6, 2001, 14 pages
DOI: 10.1615/AtomizSpr.v11.i6.100
Get accessGet access

RESUMO

A detailed study of kerosene spray and spray flames is performed to investigate the spray structure using an air-assisted atomizer. A particle dynamic analyzer (PDA) is used to measure Sauter mean diameter (SMD), mean, and root-mean-square (rms) values of axial drop velocity, drop number density, and velocity–size correlations. Three representative flames are studied and measurements are made at three different axial locations from the nozzle, with and without combustion. A thermocouple is used to measure the average local temperature. Direct photographic technique is also employed to visualize the spray and flame boundaries. Detailed comparison of the spray structures in nonburning and burning conditions is presented. The presence of the flame greatly alters the spray structure, including the interaction between the two phases. Results indicate that the overall structure of an air-assisted spray flame is different from that of gaseous diffusion flames and is characteristically similar to internal group combustion mode where liquid and gas phase reactions coexist. In the primary combustion zone, however, the gas-phase reaction is dominant, exhibiting a sheath of combustion. A physical model of the structure in airblast flames is also proposed and discussed.

CITADO POR
  1. GHAFFARPOUR Mohammad, NOORPOOR Alireza, Effects of Swirl Flow on Spray Characteristics in a Swirl-Stabilized Combustor, Journal of Fluid Science and Technology, 3, 7, 2008. Crossref

Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa Políticas de preços e assinaturas Begell House Contato Language English 中文 Русский Português German French Spain