Inscrição na biblioteca: Guest
Atomization and Sprays

Publicou 12 edições por ano

ISSN Imprimir: 1044-5110

ISSN On-line: 1936-2684

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.2 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.8 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.3 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00095 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.28 SJR: 0.341 SNIP: 0.536 CiteScore™:: 1.9 H-Index: 57

Indexed in

CRITERION BETWEEN PERMANENT COALESCENCE AND SEPARATION FOR HEAD-ON BINARY DROPLET COLLISION

Volume 15, Edição 1, 2005, pp. 61-80
DOI: 10.1615/AtomizSpr.v15.i1.40
Get accessGet access

RESUMO

Criterion between permanent coalescence and separation in head-on binary droplet collision is investigated experimentally and numerically. Colliding droplets are transformed into a torus-like disk that contracts to form an elongated droplet having rounded ends and a slim connecting neck. The results of numerical simulation are in good agreement with experimental results. The surface energy at the maximum elongation indicates the criterion for the separation only in the collision of equal-sized droplets. The nondimensional axial length at the criterion between permanent coalescence and separation is independent of the radius ratio of the droplets. The separation mechanism is discussed based on the fluid flows at the maximum elongation. In separation collision, the pressure at the connecting neck of the elongated droplet rises because the connecting neck of the droplet becomes slender. While the length of the elongated droplet decreases after the maximum elongation, the fluid flow stretching the connecting neck leads to the separation.

CITADO POR
  1. Munnannur Achuth, Reitz Rolf D., A new predictive model for fragmenting and non-fragmenting binary droplet collisions, International Journal of Multiphase Flow, 33, 8, 2007. Crossref

  2. Saroka Mary D., Ashgriz Nasser, Separation Criteria for Off-Axis Binary Drop Collisions, Journal of Fluids, 2015, 2015. Crossref

  3. Merdasi Arshia, Ebrahimi Saman, Moosavi Ali, Shafii Mohammad Behshad, Kowsary Farshad, Numerical simulation of collision between two droplets in the T-shaped microchannel with lattice Boltzmann method, AIP Advances, 6, 11, 2016. Crossref

Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa Políticas de preços e assinaturas Begell House Contato Language English 中文 Русский Português German French Spain