Inscrição na biblioteca: Guest
Computational Thermal Sciences: An International Journal

Publicou 6 edições por ano

ISSN Imprimir: 1940-2503

ISSN On-line: 1940-2554

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.5 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.3 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00017 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.28 SJR: 0.279 SNIP: 0.544 CiteScore™:: 2.5 H-Index: 22

Indexed in

NUMERICAL STUDY ON CONVECTIVE HEAT-TRANSFER ENHANCEMENT BY VORTEX INTERACTIONS

Volume 11, Edição 3, 2019, pp. 255-268
DOI: 10.1615/ComputThermalScien.2018021278
Get accessGet access

RESUMO

Miniaturization and performance augmentation of heat transfer equipment calls for heat-transfer enhancement methods with minimal pressure loss. Flow manipulators such as vortex generators (VGs) used in a flow field can enhance heat transfer without any external interference. A novel passive heat-transfer enhancement mechanism based on vortex interactions of longitudinal VGs is analyzed in the present study. Extensive computational study has been carried out to explore the effect of the interactions of identical and distinct vortex interactions to promote convective heat transfer. The role of multiple VGs and interaction of various kinds of vortices generated over a flat plate placed in a high-speed flow to promote passive heat transfer are analysed in detail. The advection upstream splitting method that is available in a finite volume method–based commercial solver is used for inviscid flux computations in a three-dimensional compressible turbulent flow field. Analysis using method of images and potential flow theory establishes a coherence between vortex trajectory and heat-transfer enhancement pattern in the flow field. A performance parameter, that compares heat-transfer enhancement with associated pressure loss is used in the present study to evaluate overall performance of the system.

Referências
  1. Akcayoglu, A., Flow past Confined Delta-Wing Type Vortex Generators, Exper. Thermal Fluid Sci., vol. 35, no. 1, pp. 112–120, 2011.

  2. Bergles, A.E. and Manglik, R.M., Current Progress in Enhanced Heat and Mass Transfer, in Proc. of ASME 2012 Heat Transfer Summer Conf. Collocated with the ASME 2012 Fluids Engineering Division Summer Meeting and the ASME 2012 10th International Conf., ASME, pp. 115–124, 2012.

  3. Bergman, T.L. and Incropera, F.P., Fundamentals of Heat and Mass Transfer, New York, NY: John Wiley & Sons, 2011.

  4. Biswas, G., Chattopadhyay, H., and Sinha, A., Augmentation of Heat Transfer by Creation of Streamwise Longitudinal Vortices using Vortex Generators, Heat Transf. Eng., vol. 33, nos. 4-5, pp. 406–424, 2012.

  5. Du, X., Feng, L., Yang, Y., and Yang, L., Experimental Study on Heat Transfer Enhancement of Wavy Finned Flat Tube with Longitudinal Vortex Generators, Appl. Thermal Eng., vol. 50, no. 1, pp. 55–62, 2013.

  6. Gee, D.L. and Webb, R., Forced Convection Heat Transfer in Helically Rib-Roughened Tubes, Int. J. Heat Mass Transf., vol. 23, no. 8, pp. 1127–1136, 1980.

  7. Gentry, M. and Jacobi, A., Heat Transfer Enhancement by Delta-Wing Vortex Generators on a Flat Plate: Vortex Interactions with the Boundary Layer, Exper. Thermal Fluid Sci., vol. 14, no. 3, pp. 231–242, 1997.

  8. Henze, M., Von Wolfersdorf, J., Weigand, B., Dietz, C., and Neumann, S., Flow and Heat Transfer Characteristics Behind Vortex Generators—A Benchmark Dataset, Int. J. Heat Fluid Flow, vol. 32, no. 1, pp. 318–328, 2011.

  9. Hosseini, M., Ganji, D., and Delavar, M.A., Experimental and Numerical Evaluation of Different Vortex Generators on Heat Transfer, Appl. Thermal Eng., vol. 108, pp. 905–915, 2016.

  10. Joshi, R.U., Soti, A.K., and Bhardwaj, R., Numerical Study of Heat Transfer Enhancement by Deformable Twin Plates in Laminar Heated Channel Flow, Comput. Thermal Sci.: An Int. J., vol. 7, nos. 5-6, pp. 467–476, 2015.

  11. Khanafer, K., Alamiri, A., and Pop, I., Fluid–Structure Interaction Analysis of Flow and Heat Transfer Characteristics around a Flexible Microcantilever in a Fluidic Cell, Int. J. Heat Mass Transf., vol. 53, no. 9, pp. 1646–1653, 2010.

  12. Khanjian, A., Russeil, S., Bougeard, D., Habchi, C., and Lemenand, T., Effect of the Angle of Attack of a Rectangular Vortex Generator on the Heat Transfer in a Parallel Plate Flow, in Proc. of Advances in Computational Tools for Engineering Applications (ACTEA), 2016 IEEE 3rd International Conf., pp. 21–25, 2016.

  13. Liou, M.S. and Steffen, C.J., A New Flux Splitting Scheme, J. Comput. Phys., vol. 107, no. 1, pp. 23–39, 1993.

  14. Menter, F., Kuntz, M., and Langtry, R., Ten Years of Industrial Experience with the SST Turbulence Model, Turbul., Heat Mass Transf., vol. 4, no. 1, pp. 625–632, 2003.

  15. Promvonge, P., Chompookham, T., Kwankaomeng, S., and Thianpong,C., Enhanced Heat Transfer in a Triangular Ribbed Channel with Longitudinal Vortex Generators, Energy Conv. Manag., vol. 51, no. 6, pp. 1242–1249, 2010.

  16. Promvonge, P., Suwannapan, S., Pimsarn, M., and Thianpong, C., Experimental Study on Heat Transfer in Square Duct with Combined Twisted-Tape and Winglet Vortex Generators, Int. Commun. Heat Mass Transf., vol. 59, pp. 158–165, 2014.

  17. Sinha, A., Chattopadhyay, H., Iyengar, A.K., and Biswas, G., Enhancement of Heat Transfer in a Fin-Tube Heat Exchanger using Rectangular Winglet Type Vortex Generators, Int. J. Heat Mass Transf., vol. 101, pp. 667–681, 2016.

  18. Song, K., Liu, S., and Wang, L., Interaction of Counter Rotating Longitudinal Vortices and the Effect on Fluid Flow and Heat Transfer, Int. J. Heat Mass Transf., vol. 93, pp. 349–360, 2016.

  19. Song, K.W. and Wang, L.B., The Effectiveness of Secondary Flow Produced by Vortex Generators Mounted on Both Surfaces of the Fin to Enhance Heat Transfer in a Flat Tube Bank Fin Heat Exchanger, J. Heat Transf., vol. 135, no. 4, p. 041902, 2013.

  20. Soti, A.K., Bhardwaj, R., and Sheridan, J., Flow-Induced Deformation of a Flexible Thin Structure as Manifestation of Heat Transfer Enhancement, Int. J. Heat Mass Transf., vol. 84, pp. 1070–1081, 2015.

  21. Webb, R.L. and Kim, N., Enhanced Heat Transfer, New York, NY: Taylor and Francis, 2005.

  22. Zdanski, P., Pauli, D., and Dauner, F., Effects of Delta Winglet Vortex Generators on Flow of Air over In-Line Tube Bank: A New Empirical Correlation for Heat Transfer Prediction, Int. Commun. Heat Mass Transf., vol. 67, pp. 89–96, 2015.

  23. Zheng, N., Liu, P., Shan, F., Liu, Z., and Liu, W., Heat Transfer Enhancement in a Novel Internally Grooved Tube by Generating Longitudinal Swirl Flows with Multi-Vortexes, Appl. Thermal Eng., vol. 95, pp. 421–432, 2016.

Próximos artigos

Positivity Preserving Analysis of Central Schemes for Compressible Euler Equations Souren Misra, Alok Patra, Santosh Kumar Panda A lattice Boltzmann study of nano-magneto-hydrodynamic flow with heat transfer and entropy generation over a porous backward facing-step channel Hassane NAJI, Hammouda Sihem, Hacen Dhahri A Commemorative Volume in Memory of Darrell Pepper David Carrington, Yogesh Jaluria, Akshai Runchal In Memoriam: Professor Darrell W. Pepper – A Tribute to an Exceptional Engineering Educator and Researcher Akshai K. Runchal, David Carrington, SA Sherif, Wilson K. S. Chiu, Jon P. Longtin, Francine Battaglia, Yongxin Tao, Yogesh Jaluria, Michael W. Plesniak, James F. Klausner, Vish Prasad, Alain J. Kassab, John R. Lloyd, Yelena Shafeyeva, Wayne Strasser, Lorenzo Cremaschi, Tom Shih, Tarek Abdel-Salam, Ryoichi S. Amano, Ashwani K. Gupta, Nesrin Ozalp, Ting Wang, Kevin R. Anderson, Suresh Aggarwal, Sumanta Acharya, Farzad Mashayek, Efstathios E. Michaelides, Bhupendra Khandelwal, Xiuling Wang, Shima Hajimirza, Kevin Dowding, Sandip Mazumder, Eduardo Divo, Rod Douglass, Roy E. Hogan, Glen Hansen, Steven Beale, Perumal Nithiarasu, Surya Pratap Vanka, Renato M. Cotta, John A. Reizes, Victoria Timchenko, Ashoke De, Keith A Woodbury, John Tencer, Aaron P. Wemhoff, G.F. ‘Jerry’ Jones, Leitao Chen, Timothy S. Fisher, Sandra K. S. Boetcher, Patrick H. Oosthuizen, Hamidreza Najafi, Brent W. Webb, Satwindar S. Sadhal, Amanie Abdelmessih Modeling of Two-Phase Gas-Liquid Slug Flows in Microchannels Ayyoub Mehdizadeh Momen, SA Sherif, William E. Lear Performance of two dimensional planar curved micronozzle used for gas separation Manu K Sukesan, Shine SR A Localized Meshless Method for Transient Heat Conduction with Applications Kyle Beggs, Eduardo Divo, Alain J. Kassab Non-nested Multilevel Acceleration of Meshless Solution of Heat Conduction in Complex Domains Anand Radhakrishnan, Michael Xu, Shantanu Shahane, Surya P Vanka Assessing the Viability of High-Capacity Photovoltaic Power Plants in Diverse Climatic Zones : A Technical, Economic, and Environmental Analysis Kadir Özbek, Kadir Gelis, Ömer Özyurt MACHINE LEARNING LOCAL WALL STEAM CONDENSATION MODEL IN PRESENCE OF NON-CONDENSABLE FROM TUBE DATA Pavan Sharma LES of Humid Air Natural Convection in Cavity with Conducting Walls Hadi Ahmadi moghaddam, Svetlana Tkachenko, John Reizes, Guan Heng Yeoh, Victoria Timchenko
Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa Políticas de preços e assinaturas Begell House Contato Language English 中文 Русский Português German French Spain