Inscrição na biblioteca: Guest
Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa
International Journal for Multiscale Computational Engineering
Fator do impacto: 1.016 FI de cinco anos: 1.194 SJR: 0.554 SNIP: 0.82 CiteScore™: 2

ISSN Imprimir: 1543-1649
ISSN On-line: 1940-4352

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.2020031740
pages 241-263

MULTISCALE MODEL CALIBRATION BY INVERSE ANALYSIS FOR NONLINEAR SIMULATION OF MASONRY STRUCTURES UNDER EARTHQUAKE LOADING

Corrado Chisari
Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
Lorenzo Macorini
Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
Bassam A. Izzuddin
Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom

RESUMO

The prediction of the structural response of masonry structures under extreme loading conditions, including earthquakes, requires the use of advanced material descriptions to represent the nonlinear behavior of masonry. In general, micro- and mesoscale approaches are very computationally demanding; thus at present they are used mainly for detailed analysis of small masonry components. Conversely macroscale models, where masonry is assumed as a homogeneous material, are more efficient and suitable for nonlinear analysis of realistic masonry structures. However, the calibration of the material parameters for such models, which is generally based on physical testing of entire masonry components, remains an open issue. In this paper, a multiscale approach is proposed, in which an accurate mesoscale model accounting for the specific masonry bond is utilized in virtual tests for the calibration of a more efficient macroscale representation assuming energy equivalence between the two scales. Since the calibration is performed offline at the beginning of the analysis, the method is computationally attractive compared to alternative homogenization techniques. The proposed methodology is applied to a case study considering the results obtained in previous experimental tests on masonry components subjected to cyclic loading, and on a masonry building under pseudo-dynamic conditions representing earthquake loading. The results confirm the potential of the proposed approach and highlight some critical issues, such as the importance of selecting appropriate virtual tests for model calibration, which can significantly influence accuracy and robustness.

Referências

  1. Addessi, D. and Sacco, E., Enriched Plane State Formulation for Nonlinear Homogenization of In-Plane Masonry Wall, Meccanica, vol. 51, no. 11, pp. 2891-2907,2016.

  2. Anthoine, A. and Caperan, P., Earthquake Tests and Analysis of the Experimental Results, European Laboratory for Structural Assessment (ELSA), Ispra, Italy, Deliverable 8.3 ESECMaSE Project, 2008.

  3. Baker, J.E., Reducing Bias and Inefficiency in the Selection Algorithm, Hillsdale, NJ: L. Erlhaum Associates, pp. 14-21, 1987.

  4. Baraldi, D., Reccia, E., and Cecchi, A., In-Plane Loaded Masonry Walls: DEM and FEM/DEM Models. A Critical Review, Meccanica, vol. 53, no. 7, pp. 1613-1628,2018.

  5. Berto, L., Saetta, A., Scotta, R., and Vitaliani, R., An Orthotopic Damage Model for Masonry Structures, Int. J. Numer. Methods Eng., vol. 55, pp. 127-157,2002.

  6. Bertolesi, E., Milani, G., and Lourenco, P.B., Implementation and Validation of a Total Displacement Non-Linear Homogenization Approach for In-Plane Loaded Masonry, Comput. Struct., vol. 176, pp. 13-33,2016.

  7. Borri, A., Castori, G., Corradi, M., and Speranzini, E., Shear Behavior of Unreinforced and Reinforced Masonry Panels Subjected to In Situ Diagonal Compression Tests, Constr. Build. Mater., vol. 25, no. 12, pp. 4403-4414,2011.

  8. Brencich, A. and de Felice, G., Brickwork under Eccentric Compression: Experimental Results and Macroscopic Models, Constr. Build. Mater., vol. 23, no. 5, pp. 1935-1946,2009.

  9. Chisari, C. and Amadio, C., TOSCA: A Tool for Optimisation in Structural and Civil Engineering Analyses, Int. J. Adv. Struct. Eng, vol. 10, no. 4, pp. 401-419,2018.

  10. Chisari, C., Macorini, L., Amadio, C., and Izzuddin, B.A., An Inverse Analysis Procedure for Material Parameter Identification of Mortar Joints in Unreinforced Masonry, Comput. Struct., vol. 155, pp. 97-105,2015.

  11. Chisari, C., Macorini, L., Amadio, C., and Izzuddin, B., Identification of Mesoscale Model Parameters for Brick-Masonry, Int. J. Solids Struct., vol. 146, pp. 224-240,2018a.

  12. Chisari, C., Rizzano, G., Amadio, C., and Galdi, V., Sensitivity Analysis and Calibration of Phenomenological Models for Seismic Analyses, SoilDyn. Earthquake Eng., vol. 109, pp. 10-22,2018b.

  13. CUR, Structural Masonry: A Experimental/Numerical Basis for Practical Design Rules, Gouda, The Netherlands: CUR, 1994.

  14. Da Porto, F., Guidi, G., Garbin, E., and Modena, C., In-Plane Behavior of Clay Masonry Walls: Experimental Testing and Finite-Element Modeling, J. Struct. Eng, vol. 136, no. 11, pp. 1379-1392,2010.

  15. De Bellis, M.L. and Addessi, D., A Cosserat based Multi-Scale Model for Masonry Structures, Int. J. Multiscale Comput. Eng, vol. 9, no. 5, pp. 543-563,2011.

  16. Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T., A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II, IEEE Trans. Evol. Comput, vol. 6, no. 2, pp. 182-197,2002.

  17. Di Re, P., Addessi, D., and Sacco, E., A Multiscale Force-Based Curved Beam Element for Masonry Arches, Comput. Struct., vol. 208, pp. 17-31,2018.

  18. Eckardt, S. and Konke, C., Adaptive Damage Simulation of Concrete Using Heterogeneous Multiscale Models, J. Algorithms Comput. Technol, vol. 2, pp. 275-297,2008.

  19. EN 1998-1-1, Eurocode 8: Design of Structures for Earthquake Resistance-Part 1: General Rules, Seismic Actions and Rules for Buildings, European Standard, 2005.

  20. Eshelman, L.J. and Schaffer, J.D., Real-Coded Genetic Algorithms and Interval Schemata, in Foundations of Genetic Algorithms, San Mateo, CA: Morgan-Kaufman, pp. 187-202,1992.

  21. Feyel, F. and Chaboche, J., FE2 Multiscale Approach for Modelling the Elastoviscoplastic Behaviour of Long Fibre SiC-Ti Com-posite Materials, Comput. Methods Appl. Mech. Eng, vol. 183, pp. 309-330,2000.

  22. Fu, Q., Qian, J., and Beskos, D.E., Inelastic Anisotropic Constitutive Models based on Evolutionary Linear Transformations on Stress Tensors with Application to Masonry, Acta Mech, vol. 229, no. 2, pp. 719-743,2018.

  23. Gambarotta, L. and Lagomarsino, S., Damage Models for the Seismic Response of Brick Masonry Shear Walls. Part I: The Mortar Joint Model and Its Applications, Earthquake Eng. Struct. Dyn, vol. 26, no. 4, pp. 423-439,1997.

  24. Gatta, C., Addessi, D., and Vestroni, F., Static and Dynamic Nonlinear Response of Masonry Walls, Int. J. Solids Struct., vol. 155, pp. 291-303,2018.

  25. Geers, M.G.D., Kouznetsova, V.G., and Brekelmans, W.A.M., Multi-Scale Computational Homogenization: Trends and Chal-lenges, J. Comput. Appl. Math, vol. 234, pp. 2175-2182,2010.

  26. Hill,R., A Self-Consistent Mechanics of Composite Materials, J. Mech. Phys. Solids, vol. 13, no. 4, pp. 213-222,1965.

  27. Izzuddin, B.A., Nonlinear Dynamic Analysis ofFramed Structures, PhD, Imperial College London, 1991.

  28. Lagomarsino, S., Penna, A., Galasco, A., and Cattari, S., TREMURI Program: An Equivalent Frame Model for the Nonlinear Seismic Analysis of Masonry Buildings, Eng. Struct., vol. 56, pp. 1787-1799,2013.

  29. Lee, J. and Fenves, G., Plastic-Damage Model for Cyclic Loading of Concrete Structures, J. Eng. Mech, vol. 124, no. 8, pp. 892-900,1998.

  30. Lemos, J., Discrete Element Modeling of Masonry Structures, Int. J. Archit. Heritage, vol. 1, no. 2, pp. 190-213,2007.

  31. Leonetti, L., Greco, F., Trovalusci, P., Luciano, R., and Masiani, R., A Multiscale Damage Analysis of Periodic Composites Using a Couple-Stress/Cauchy Multidomain Model: Application to Masonry Structures, Composites, Part B, vol. 141, pp. 50-59, 2018.

  32. Lotfi, H.R. and Shing, P., Interface Model Applied to Fracture of Masonry Structures, J. Struct. Eng, vol. 120, no. 1, pp. 63-80, 1994.

  33. Lourenco, P.B., de Borst, R., and Rots, J.G., A Plane Stress Softening Plasticity Model for Orthotopic Materials, Int. J. Numer. Methods Eng, vol. 40, pp. 4033-4057,1997.

  34. Lourenco, P.B. and Rots, J.G., Multisurface Interface Model for Analysis of Masonry Structures, J. Eng. Mech., vol. 123, no. 7, pp. 660-668,1997.

  35. Lubliner, J., Olver, J., Oller, S., and Oiiate, E., A Plastic-Damage Model for Concrete, Int. J. Solids Struct., vol. 25, no. 3, pp. 299-326,1989.

  36. Luciano, R. and Sacco, E., Homogenization Technique and Damage Model for Old Masonry Material, Int. J. Solids Struct., vol. 34, no. 24, pp. 3191-3208,1997?.

  37. Macorini, L. and Izzuddin, B., A Non-Linear Interface Element for 3D Mesoscale Analysis of Brick-Masonry Structures, Int. J. Numer. Methods Eng., vol. 85, pp. 1584-1608,2011.

  38. Mandel, J., Plasticite Classique et Viscoplasticite, Vienna-New York: Springer-Verlag, 1971.

  39. Marler, R. and Arora, J., Survey of Multi-Objective Optimization Methods for Engineering, Struct. Multidisc. Optim., vol. 26, no. 6, pp. 369-395, 2004.

  40. Massart, T., Peerlings, R., and Geers, M., An Enhanced Multi-Scale Approach for Masonry Wall Computations with Localization of Damage, Int. J. Numer. Methods Eng., vol. 69, pp. 1022-1059,2007.

  41. Miettinen, K., Nonlinear Multiobjective Optimization, Berlin: Springer, 1999.

  42. Milani, G., Simple Homogenization Model for the Non-Linear Analysis of In-Plane Loaded Masonry Walls, Comput. Struct., vol. 89, nos. 17-18, pp. 1586-1601,2011.

  43. Minga, E., Macorini, L., and Izzuddin, B., A 3D Mesoscale Damage-Plasticity Approach for Masonry Structures under Cyclic Loading, Meccanica, vol. 53, no. 7, pp. 1591-1611,2018.

  44. Nemat-Nasser, S. andHori,M., Micromechanics: Overall Properties of Heterogeneous Materials, 2nd ed., Amsterdam, theNether- lands: Elsevier, 1999.

  45. Nguyen, V., Stroeven, M., and Sluys, L., Multiscale Continuous and Discontinuous Modeling of Heterogeneous Materials: A Review on Recent Developments, J. Multiscale Modell., vol. 3, no. 4, pp. 229-270,2011.

  46. Panto, B., Cannizzaro, F., Caddemi, S., and Calio, I., 3D Macro-Element Modelling Approach for Seismic Assessment of Historical Masonry Churches, Adv. Eng. Software, vol. 97, pp. 40-59,2016.

  47. Pela, L., Cervera, M., and Roca, P., Continuum Damage Model for Orthotopic Materials: Application to Masonry, Comput. Methods Appl. Mech. Eng., vol. 200, pp. 917-930,2011.

  48. Petracca, M., Pela, L., Rossi, R., Oller, S., Camata, G., and Spacone, E., Regularization of First Order Computational Homogenization for Multiscale Analysis of Masonry Structures, Comput. Mech., vol. 57, no. 2, pp. 257-276,2016.

  49. Reccia, E., Leonetti, L., Trovalusci, P., and Cecchi, A., A Multiscale/Multidomain Model for the Failure Analysis of Masonry Walls: A Validation with a Combined FEM/DEM Approach, Int. J. Multiscale Comput. Eng., vol. 16, no. 4, pp. 325-343,2018.

  50. Sarhosis, V. and Sheng, Y., Identification of Material Parameters for Low Bond Strength Masonry, Eng. Struct., vol. 60, pp. 100-110,2014.

  51. Sobol, I., Distribution of Points in a Cube and Approximate Evaluation of Integrals, U. S. S. R. Comput. Math. Math. Phys, vol. 7, pp. 86-112,1967.

  52. Trovalusci, P. and Masiani, R., Cosserat and Cauchy Materials as Continuum Models of Brick Masonry, Meccanica, vol. 31, pp. 421-432,1996.

  53. Trovalusci, P. and Masiani, R., Non-Linear Micropolar and Classical Continua for Anisotropic Discontinuous Materials, Int. J. Solids Struct., vol. 40, no. 5, pp. 1281-1297,2003.

  54. Trovalusci, P. andPau, A., Derivation ofMicrostructured Continua from Lattice Systems via Principle of Virtual Works: The Case of Masonry-Like Materials as Micropolar, Second Gradient and Classical Continua, Acta Mech, vol. 225, no. 1, pp. 157-177, 2014.


Articles with similar content:

COMPARATIVE ANALYSIS OF NUMERICAL DISCRETE AND FINITE ELEMENT MODELS: THE CASE OF IN-PLANE LOADED PERIODIC BRICKWORK
Composites: Mechanics, Computations, Applications: An International Journal, Vol.4, 2013, issue 4
Antonio Cazzani, Daniele Baraldi, Emanuele Reccia, Antonella Cecchi
MODEL CALIBRATION FOR DETONATION PRODUCTS: A PHYSICS-INFORMED, TIME-DEPENDENT SURROGATE METHOD BASED ON MACHINE LEARNING
International Journal for Uncertainty Quantification, Vol.10, 2020, issue 3
Ruili Wang, Juan Zhang, J. Yin, J. Chen
CALIBRATION AND RANKING OF COARSE-GRAINED MODELS IN MOLECULAR SIMULATIONS USING BAYESIAN FORMALISM
International Journal for Uncertainty Quantification, Vol.7, 2017, issue 2
Dmitry Bedrov, Hadi Meidani, Justin B. Hooper, Robert M. Kirby
Sensitivity Analysis of Parameters Related to the Modeling of Adsorption-Type Hydrogen Storage Tanks
Heat Transfer Research, Vol.40, 2009, issue 2
Erling Naess, S. Jensen
Tensile Behavior of Cementitious Composite Reinforced with Epoxy Impregnated Multifilament Yarns
International Journal for Multiscale Computational Engineering, Vol.7, 2009, issue 2
M. Konrad, Rostislav Chudoba