Inscrição na biblioteca: Guest
Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa
International Journal for Multiscale Computational Engineering
Fator do impacto: 1.016 FI de cinco anos: 1.194 SJR: 0.554 SNIP: 0.82 CiteScore™: 2

ISSN Imprimir: 1543-1649
ISSN On-line: 1940-4352

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.2020032920
pages 265-284


Nicholas Fantuzzi
Department of Civil, Chemical, Environmental and Materials Engineering University of Bologna Viale del Risorgimento 2, 40136 Bologna, Italy
Patrizia Trovalusci
Department of Structural Engineering and Geotechnics Sapienza University of Rome Via Gramsci 53, 00197 Rome, Italy
R. Luciano
Engineering Department, Parthenope University, Centro Direzionale (Isola C4), 80133, Napoli, Italy


This work discusses the advantages of micropolar theory in modeling anisotropic composite materials with microstructure. A homogenized constitutive model starting from a representative volume element is proposed in order to find an equivalent continuum. Classical (e.g., Cauchy of Grade 1) continua are not always suitable to accurately approximate the behavior of such composites because no size effects, nor lack of symmetries in strain and stress, can be taken into account. This study focuses on composites made of hexagonal rigid particles which interact among themselves through elastic interfaces, so that the deformation energy of the material is concentrated only at the interfaces. Three particle geometries are investigated such as orthotetragonal, auxetic, and chiral. Novel results have been achieved by presenting the behavior of panels with various material symmetries and subjected to concentrated loads.


  1. Addessi, D. and Sacco, E., A Multi-Scale Enriched Model for the Analysis of Masonry Panels, Int. J. Solids Struct., vol. 49, no. 6, pp. 865-880,2012.

  2. Alibert, J.J. and Della Corte, A., Second-Gradient Continua as Homogenized Limit of Pantographic Microstructured Plates: A Rigorous Proof, Z Angew. Math. Phys, vol. 66, no. 5, pp. 2855-2870,2015. DOI: 10.1007/s00033-015-0526-x.

  3. Altenbach, H. and Sadowski, T., Failure and Damage Analysis of Advanced Materials, CISM International Centre for Mechanical Sciences, Vienna, Austria: Springer, 2014.

  4. Bacca, M., Bigoni, D., Corso, F.D., and Veber, D., Mindlin Second-Gradient Elastic Properties from Dilute Two-Phase Cauchy-Elastic Composites. Part I: Closed Form Expression for the Effective Higher-Order Constitutive Tensor, Int. J. Solids Struct., vol. 50, no. 24, pp. 4010-4019,2013.

  5. Bacigalupo, A. and Gambarotta, L., Second-Order Computational Homogenization of Heterogeneous Materials with Periodic Microstructure, ZAMM-J. Appl. Math. Mech./Z. Angew. Math. Mech., vol. 90,nos. 10-11,pp. 796-811,2010.

  6. Baraldi, D., Reccia, E., and Cecchi, A., In Plane Loaded Masonry Walls: DEM and FEM/DEM Models. A Critical Review, Meccanica, vol. 53, pp. 1613-1628,2018.

  7. Bouyge, F., Jasiuk, I., and Ostoja-Starzewski, M., A Micromechanically based Couplestress Model of an Elastic Two-Phase Composite, Int. J. Solids Struct., vol. 38, no. 10, pp. 1721-1735,2001.

  8. Budiansky, B., On the Elastic Moduli of Some Heterogeneous Materials, J. Mech. Phys. Solids, vol. 13, no. 4, pp. 223-227,1965.

  9. Civalek, O., Demir, C., and Akgoz, B., Free Vibration and Bending Analyses of Cantilever Microtubules based on Nonlocal Continuum Model, Math. Comput. Appl., vol. 15, no. 2, pp. 289-298,2010.

  10. Demir, C. and Civalek, O., Torsional and Longitudinal Frequency and Wave Response of Microtubules based on the Nonlocal Continuum and Nonlocal Discrete Models, Appl. Math. Model., vol. 37, no. 22, pp. 9355-9367,2013.

  11. Drugan, W. and Willis, J., A Micromechanics-Based Nonlocal Constitutive Equation and Estimates of Representative Volume Element Size for Elastic Composites, J. Mech. Phys. Solids, vol. 44, no. 4, pp. 497-524,1996.

  12. Ehlers, W., Recovering Micropolar Continua from Particle Mechanics by Use of Homogenisation Strategies, Berlin: Springer, pp. 179-189,2011.

  13. Eremeyev, V.A. and Pietraszkiewicz, W., Material Symmetry Group and Constitutive Equations of Micropolar Anisotropic Elastic Solids, Math. Mech. Solids, vol. 21, no. 2, pp. 210-221,2016. DOI: 10.1177/1081286515582862.

  14. Fantuzzi, N., Leonetti, L., Trovalusci, P., and Tornabene, F., Some Novel Numerical Applications of Cosserat Continua, Int. J. Comput. Methods, vol. 15,no.6,p. 1850054,2018. DOI: 10.1142/S0219876218500548.

  15. Fantuzzi, N., Trovalusci, P., and Dharasura, S., Mechanical Behavior of Anisotropic Composite Materials as Micropolar Continua, Front. Mater., vol. 6, no. 1, p. 59,2019.

  16. Favata, A., Trovalusci, P., and Masiani, R., A Multiphysics and Multiscale Approach for Modeling Microcracked Thermo-Elastic Materials, Comput. Mater. Sci., vol. 116, pp. 22-31,2016.

  17. Ferreira, A., MATLAB Codes for Finite Element Analysis: Solids and Structures, Solid Mechanics and Its Applications, The Netherlands: Springer, 2008.

  18. Forest, S.,Dendievel, R., andCanova, G.R., Estimating the Overall Properties of Heterogeneous Cosserat Materials, Model. Simul. Mater. Sci. Eng., vol. 7, no. 5, pp. 829-840,1999. DOI: 10.1088%2F0965-0393%2F7%2F5%2F314.

  19. Forest, S., Pradel, F., and Sab, K., Asymptotic Analysis of Heterogeneous Cosserat Media, Int. J. Solids Struct., vol. 38, no. 26, pp. 4585-4608,2001.

  20. Forest, S. and Sab, K., Cosserat Overall Modeling of Heterogeneous Materials, Mech. Res. Commun., vol. 25, no. 4, pp. 449-454, 1998.

  21. Greco, F., Leonetti, L., Luciano, R., and Blasi, P.N., Effects of Microfracture and Contact Induced Instabilities on the Macroscopic Response of Finitely Deformed Elastic Composites, Compos. PartB: Eng., vol. 107, pp. 233-253,2016.

  22. Greco, F., Leonetti, L., Luciano, R., and Trovalusci, P., Multiscale Failure Analysis of Periodic Masonry Structures with Traditional and Fiber-Reinforced Mortar Joints, Compos. PartB: Eng., vol. 118, pp. 75-95,2017.

  23. Greco, F., Leonetti, L., Medaglia, C.M., Penna, R., and Pranno, A., Nonlinear Compressive Failure Analysis of Biaxially Loaded Fiber Reinforced Materials, Compos. PartB: Eng., vol. 147, pp. 240-251,2018.

  24. Jain, J.R. and Ghosh, S., Damage Evolution in Composites with a Homogenization-Based Continuum Damage Mechanics Model, Int. J. Damage Mechan., vol. 18, no. 6, pp. 533-568,2009. DOI: 10.1177/1056789508091563.

  25. Kouznetsova, V., Geers, M., and Brekelmans, W., Multi-Scale Second-Order Computational Homogenization of Multi-Phase Materials: A Nested Finite Element Solution Strategy, Comput. Methods Appl. Mech. Eng., vol. 193, no. 48, pp. 5525-5550,2004.

  26. Kouznetsova, V., Geers, M.G.D., and Brekelmans, W.A.M., Multi-Scale Constitutive Modelling of Heterogeneous Materials with a Gradient-Enhanced Computational Homogenization Scheme, Int. J. Numer. Methods Eng., vol. 54, no. 8, pp. 1235-1260, 2002.

  27. Kunin, I.A., The Theory of Elastic Media with Microstructure and the Theory of Dislocations, in Mechanics of Generalized Continua, E. Kroner, Ed., Berlin: Springer, pp. 321-329,1968.

  28. Larsson, R. and Zhang, Y., Homogenization of Microsystem Interconnects based on Micropolar Theory and Discontinuous Kinematics, J. Mech. Phys. Solids, vol. 55, no. 4, pp. 819-841,2007.

  29. Leismann, T. and Mahnken, R., Comparison of Hyperelastic Micromorphic, Micropolar and Microstrain Continua, Int. J. Non-Linear Mech, vol. 77, pp. 115-127,2015.

  30. Leonetti, L., Fantuzzi, N., Trovalusci, P., and Tornabene, F., Scale Effects in Orthotopic Composite Assemblies as Micropolar Continua: A Comparison between Weak- and Strong-Form Finite Element Solutions, Materials, vol. 12, no. 5, 2019.

  31. Luciano, R. and Willis, J., Bounds on Non-Local Effective Relations for Random Composites Loaded by Configuration-Dependent Body Force, J. Mech. Phys. Solids, vol. 48, no. 9, pp. 1827-1849,2000.

  32. Masiani, R. and Trovalusci, P., Cosserat and Cauchy Materials as Continuum Models of Brick Masonry, Meccanica, vol. 31, no. 4, pp. 421-432,1996. DOI: 10.1007/BF00429930.

  33. Massart, T.J., Peerlings, R.H.J., and Geers, M.G.D., An Enhanced Multi-Scale Approach for Masonry Wall Computations with Localization of Damage, Int. J. Numer. Methods Eng., vol. 69, no. 5, pp. 1022-1059,2007.

  34. Nemat-Nasser, S., Hori, M., and Achenbach, J., Micromechanics: Overall Properties of Heterogeneous Materials, Amsterdam: Elsevier Science, 2013.

  35. Nguyen, V.P., Lloberas-Valls, O., Stroeven, M., and Sluys, L.J., Computational Homogenization for Multiscale Crack Modeling. Implementational and Computational Aspects, Int. J. Numer. Methods Eng., vol. 89, no. 2, pp. 192-226,2012.

  36. Onck, P.R., Cosserat Modeling of Cellular Solids, Comptes Rendus Mecanique, vol. 330, no. 11, pp. 717-722,2002.

  37. Ostoja-Starzewski, M., Boccara, S.D., and Jasiuk, I., Couple-Stress Moduli and Characteristics Length of a Two-Phase Composite, Mech. Res. Commun, vol. 26, no. 4, pp. 387-396,1999.

  38. Pau, A. and Trovalusci, P., Block Masonry as Equivalent Micropolar Continua: The Role of Relative Rotations, Acta Mech., vol. 223, no. 7, pp. 1455-1471,2012. DOI: 10.1007/s00707-012-0662-8.

  39. Peerlings, R.H.J. and Fleck, N.A., Computational Evaluation of Strain Gradient Elasticity Constants, Int. J. Multiscale Comput. Eng, vol. 2, no. 4,2004.

  40. Reccia, E., Leonetti, L., Trovalusci, P., and Cecchi, A., A Multiscale/Multidomain Model for the Failure Analysis of Masonry Walls: A Validation with a Combined FEM/DEM Approach, Int. J. Multiscale Comput. Eng., vol. 16, pp. 325-343,2018.

  41. Reddy, J., Introduction to the Finite Element Method, New York: McGraw-Hill, 2004.

  42. Reddy, J., Energy Principles and Variational Methods in Applied Mechanics, New York: Wiley, 2017.

  43. Rizzi, G., Corso, F.D., Veber, D., and Bigoni, D., Identification of Second-Gradient Elastic Materials from Planar Hexagonal Lattices. Part II: Mechanical Characteristics and Model Validation, Int. J. Solids Struct., vols. 176-177, pp. 19-35,2019.

  44. Scherphuis, J., Jaap's Puzzle Page, accessed on September 19,2019 from, 2019.

  45. Sluys, L., de Borst, R., and Mulhaus, H.B., Wave Propagation, Localization and Dispersion in a Gradient-Dependent Medium, Int. J Solids Struct., vol. 30, no. 9, pp. 1153-1171,1993.

  46. Smyshlyaev, V. and Cherednichenko, K., On Rigorous Derivation of Strain Gradient Effects in the Overall Behaviour of Periodic Heterogeneous Media, J. Mech. Phys. Solids, vol. 48, no. 6, pp. 1325-1357,2000.

  47. Sokolowski, M., Theory of Couple-Stresses in Bodies with Constrained Rotations, Vol. 26 of CISM Courses and Lectures, Vienna, Austria: Springer, 1972.

  48. Tekolu, C. and Onck, P.R., Size Effects in Two-Dimensional Voronoi Foams: A Comparison between Generalized Continua and Discrete Models, J. Mech. Phys. Solids, vol. 56, no. 12, pp. 3541-3564,2008.

  49. Trovalusci, P., Molecular Approaches for Multifield Continua: Origins and Current Developments, Vienna, Austria: Springer, pp. 211-278,2014. DOI: 10.1007/978-3-7091-1812-2.7.

  50. Trovalusci, P., Bellis, M.L.D., and Masiani, R., A Multiscale Description of Particle Composites: From Lattice Microstructures to Micropolar Continua, Compos. Part B: Eng, vol. 128, pp. 164-173,2017.

  51. Trovalusci, P. and Masiani, R., Material Symmetries of Micropolar Continua Equivalent to Lattices, Int. J. Solids Struct., vol. 36, no. 14, pp. 2091-2108,1999.

  52. Trovalusci, P. and Masiani, R., Non-Linear Micropolar and Classical Continua for Anisotropic Discontinuous Materials, Int. J. Solids Struct, vol. 40, no. 5, pp. 1281-1297,2003.

  53. Trovalusci, P. and Masiani, R., A Multifield Model for Blocky Materials based on Multiscale Description, Int. J. Solids Struct., vol. 42, no. 21, pp. 5778-5794,2005.

  54. Trovalusci, P. and Pau, A., Derivation of Microstructured Continua from Lattice Systems via Principle of Virtual Works: The Case of Masonry-Like Materials as Micropolar, Second Gradient and Classical Continua, Acta Mech, vol. 225, no. 1, pp. 157-177, 2014.

  55. Trovalusci, P. and Sansalone, V., A Numerical Investigation of Structure-Property Relations in Fiber Composite Materials, Int. J. Multisc. Comput. Eng., vol. 5, no. 2, pp. 141-152,2007.

  56. Trovalusci, P., Varano, V., and Rega, G., A Generalized Continuum Formulation for Composite Microcracked Materials and Wave Propagation in a Bar, J. Appl. Mech, vol. 77, no. 6, p. 061002,2010. DOI: 10.1115/1.4001639.

  57. Tuna, M., Kirca, M., and Trovalusci, P., Deformation of Atomic Models and Their Equivalent Continuum Counterparts Using Eringens Two-Phase Local/Nonlocal Model, Mech. Res. Commun., vol. 97, pp. 26-32,2019.

  58. Tuna, M. and Trovalusci, P., Scale Dependent Continuum Approaches for Discontinuous Assemblies: Explicit and Implicit Non-LocalModels, Mech. Res. Commun, vol. 103,p. 103461,2020. DOI: 10.1016/j.mechrescom.2019.103461.

  59. Yang, D., Sheng, Y., Ye, J., and Tan, Y., Collapse Behaviour of Three-Dimensional Brick-Block Systems Using Non-Linear Programming, Struct. Eng. Mech, vol. 10, no. 2, pp. 181-195,2000.

  60. Yang, D., Sheng, Y., Ye, J., and Tan, Y., Discrete Element Modeling of the Microbond Test of Fiber Reinforced Composite, Comput. Mater. Sci., vol. 49, no. 2, pp. 253-259,2010.

Articles with similar content:

Computational Evaluation of Strain Gradient Elasticity Constants
International Journal for Multiscale Computational Engineering, Vol.2, 2004, issue 4
N. A. Fleck, R. H. J. Peerlings
Nanoscience and Technology: An International Journal, Vol.6, 2015, issue 2
Mario Fagone, Massimo Cuomo
International Journal for Multiscale Computational Engineering, Vol.14, 2016, issue 6
Ashish Srivastava, Dinesh Kumar
Nanoscience and Technology: An International Journal, Vol.6, 2015, issue 2
V. S. Shorkin, L. Yu. Frolenkova, S. N. Romashin, N. A. Dolgov
Nonlinear viscoelastic analysis of statistically homogeneous random composites
International Journal for Multiscale Computational Engineering, Vol.2, 2004, issue 4
Michal Sejnoha, R. Valenta, Jan Zeman