Inscrição na biblioteca: Guest
Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa
International Journal for Multiscale Computational Engineering
Fator do impacto: 1.016 FI de cinco anos: 1.194 SJR: 0.452 SNIP: 0.68 CiteScore™: 1.18

ISSN Imprimir: 1543-1649
ISSN On-line: 1940-4352

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.2011002356
pages 155-170

SPECIFICALLY TAILORED USE OF THE FINITE ELEMENT METHOD TO STUDY MUSCULAR MECHANICS WITHIN THE CONTEXT OF FASCIAL INTEGRITY: THE LINKED FIBER-MATRIX MESH MODEL

Can A. Yucesoy
Biomedical Engineering Institute, Boaziçi University, Istanbul, Turkey
Peter A. Huijing
Instituut voor Fundamentele en Klinische Bewegingswetenschappen, Faculteit Bewegingswetenschappen, Vrije Universiteit, Amsterdam, The Netherlands

RESUMO

In addition to providing a great advantage that geometrically highly complex structures can be modeled, the finite element method also allows addressing complex mechanics concepts such as nonlinear material properties and large deformations. These capabilities are highly valuable for studying skeletal muscle mechanics and were successfully implemented by several researchers. Certainly, those models made an important contribution to our understanding of fundamental muscle physiology. A common modeling consideration was that the myotendinous force transmission was regarded as the exclusive mechanism of exertion of muscle force. However, if muscular structures are considered to operate within the context of fascial integrity (the condition in vivo), additional mechanical connections, hence force transmission pathways to the myotendinous ones must be taken into account, i.e., (i) muscle fibers and intramuscular connective tissue stroma are connected to each other not only at the ends but also along the full length of the muscle fibers and (ii) in vivo muscle is not an isolated entity, i.e., direct collagenous linkages exist between epimysia of adjacent muscles and fascial structures (e.g., neurovascular tracts, compartmental boundaries) and provide connections between muscular and nonmuscular structures at several locations additional to the muscle's tendinous insertion and origin. These nonmyotendious connections have been shown to transmit substantial amounts of muscle force, i.e., intra- and epimuscular myofascial force transmission. The linked fiber-matrix mesh (LFMM) model was designed specifically to study muscular mechanics within the context of fascial integrity, i.e., (i) two separate but elastically linked meshes representing muscle fiber and extracellular matrix domains were used to model muscle tissue and (ii) muscles' epimuscular connections were accounted for. Therefore, it was aimed at addressing the effects of intra- and epimuscularly myofascial force transmission on muscular mechanics, e.g., changes in sarcomere lengths. The goal of this article is to provide a comprehensive description of the LFMM model and to review its contribution to muscular mechanics.

Referências

  1. Ates, F., Huijing, P. A., and Yucesoy, C. A., Due to epimuscular myofascial force transmission, surgical aponeurotomy causes a force reduction not only for the agonist but also for its non-targetted synergist.

  2. Baumann, J. U. and Koch, H. G., Ventrale aponeurotische verlangerung des musculus gastrocnemius. DOI: 10.1007/BF02514828

  3. Berthier, C. and Blaineau, S., Supramolecular organization of the subsarcolemmal cytoskeleton of adult skeletal muscle fibers: A review. DOI: 10.1016/S0248-4900(97)89313-6

  4. Blemker, S. S., Pinsky, P. M., and Delp, S. L., A 3D model of muscle reveals the causes of nonuniform strains in the biceps brachii. DOI: 10.1016/j.jbiomech.2004.04.009

  5. Bl, M. and Reese, S., Micromechanical modelling of skeletal muscles based on the finite element method. DOI: 10.1080/10255840701771750

  6. Gielen, S., A continuum approach to the mechanics of contracting skeletal muscle.

  7. Hawkins, D. and Bey, M., Muscle and tendon force-length properties and their interactions in vivo. DOI: 10.1016/S0021-9290(96)00094-2

  8. Huijing, P. A., Important experimental factors for skeletal muscle modeling: Non-linear changes of muscle length force characteristics as a function of degree of activity. DOI: 10.1076/ejom.34.1.47.13157

  9. Huijing, P. A., Muscle as a collagen fiber reinforced composite material: Force transmission in muscle and whole limb. DOI: 10.1016/S0021-9290(98)00186-9

  10. Huijing, P. A., Epimuscular myofascial force transmission between antagonistic and synergistic muscles can explain movement limitation in spastic paresis. DOI: 10.1016/j.jelekin.2007.02.003

  11. Huijing, P. A., Epimuscular myofascial force transmission: A historical review and implications for new research. DOI: 10.1016/j.jbiomech.2008.09.027

  12. Huijing, P. A. and Baan, G. C., Extramuscular myofascial force transmission within the rat anterior tibial compartment: Proximodistal differences in muscle force. DOI: 10.1046/j.1365-201X.2001.00911.x

  13. Huijing, P. A. and Baan, G. C., Myofascial force transmission causes interaction between adjacent muscles and connective tissue: Effects of blunt dissection and compartmental fasciotomy on length force characteristics of rat extensor digitorum longus muscle. DOI: 10.1076/apab.109.2.97.4269

  14. Huijing, P. A. and Baan, G. C., Myofascial force transmission: Muscle relative position and length determine agonist and synergist muscle force. DOI: 10.1152/japplphysiol.00173.2002

  15. Huijing, P. A., Maas, H., and Baan, G. C., Compartmental fasciotomy and isolating a muscle from neighboring muscles interfere with extramuscular myofascial force transmission within the rat anterior crural compartment. DOI: 10.1002/jmor.10097

  16. Huyghe, J. M., van Campen, D. H., Arts, T., and Heethaar, R. M., The constitutive behaviour of passive heart muscle tissue: A quasi-linear viscoelastic formulation. DOI: 10.1016/0021-9290(91)90309-B

  17. Jaspers, R. T., Brunner, R., Baan, G. C., and Huijing, P. A., Acute effects of intramuscular aponeurotomy and tenotomy on multitendoned rat EDL: Indications for local adaptation of intramuscular connective tissue. DOI: 10.1002/ar.10045

  18. Jaspers, R. T., Brunner, R., Pel, J. J. M., and Huijing, P. A., Acute effects of intramuscular aponeurotomy on rat GM: Force transmission, muscle force and sarcomere length.

  19. Jaspers, R. T., Brunner, R., Riede, U. N., and Huijing, P. A., Healing of the aponeurosis during recovery from aponeurotomy: Morphological and histological adaptation and related changes in mechanical properties. DOI: 10.1016/j.orthres.2004.08.022

  20. Johansson, T., Meier, P., and Blickhan, R., A finite-element model for the mechanical analysis of skeletal muscles. DOI: 10.1006/jtbi.2000.2109

  21. Maas, H., Baan, G. C., and Huijing, P. A., Intermuscular interaction via myofascial force transmission: Effects of tibialis anterior and extensor hallucis longus length on force transmission from rat extensor digitorum longus muscle.

  22. Maas, H., Baan, G. C., Huijing, P. A., Yucesoy, C. A., Koopman, B. H. F. J. M., and Grootenboer, H. J., The relative position of EDL muscle affects the length of sarcomeres with in muscle fibers: Experimental results and finite element modeling. DOI: 10.1115/1.1615619

  23. Maas, H., Meijer, H. J. M., and Huijing, P. A., Intermuscular Interaction between synergists in rat originates from both intermuscular and extramuscular myofascial force transmission. DOI: 10.1159/000089967

  24. Maas, H., Yucesoy, C. A., Baan, G. C., and Huijing, P. A., Implications of muscle relative position as a co-determinant of isometric muscle force: A review and some experimental results. DOI: 10.1142/S0219519403000703

  25. Malaiya, R., McNee, A. E., Fry, E. L. C., Gough, M., and Shortland, A. P., The morphology of the medial gastrocnemius in typically developing children and children with spastic hemiplegic cerebral palsy. DOI: 10.1016/j.jelekin.2007.02.009

  26. Meijer, K., Grootenboer, H. J., Koopman, H. F., van der Linden, B. J., and Huijing, P. A., A hill type model of rat medial gastrocnemius muscle that accounts for shortening history effects.

  27. Meijer, K., Grootenboer, H. J., Koopman, H. F. J. M., and Huijing, P. A., Isometric length-force curves during and after concentric contractions differ from the initial isometric length-force curve in rat muscle.

  28. Oomens, C. W., Maenhout, M., van Oijen, C. H., Drost, M. R., and Baaijens, F. P., Finite element modelling of contracting skeletal muscle. DOI: 10.1080/17452750601040626

  29. Rijkelijkhuizen, J. M., Baan, G. C., and Huijing, P. A., Myofascial force transmission between antagonistic muscles located in opposite compartments of the rat hindlimb. DOI: 10.1016/j.jelekin.2007.02.004

  30. Street, S. F., Lateral transmission of tension in frog myofibers: a myofibrillar network and transverse cytoskeletal connections are possible transmitters. DOI: 10.1002/jcp.1041140314

  31. Strumpf, R. K., Humphrey, J. D., and Yin, F. C., Biaxial mechanical properties of passive and tetanized canine diaphragm.

  32. Trombitas, K., Jin, J. P., and Granzier, H., The mechanically active domain of titin in cardiac muscle. DOI: 10.1161/​01.RES.77.4.856

  33. van der Linden, B. J. J. J., Mechanical Modeling of Muscle Functioning, Faculty of Mechanical Engineering.

  34. Willems, M. E. and Huijing, P. A., Heterogeneity of mean sarcomere length in different fibres: Effects on length range of active force production in rat muscle. DOI: 10.1007/BF00599518

  35. Wohlfart, B., Grimm, A. F., and Edman, K. A., Relationship between sarcomere length and active force in rabbit papillary muscle. DOI: 10.1111/j.1748-1716.1977.tb05994.x

  36. Yucesoy, C. A., Epimuscular myofascial force transmission implies novel principles for muscular mechanics. DOI: 10.1097/JES.0b013e3181e372ef

  37. Yucesoy, C. A., Baan, G. C., and Huijing, P. A., Epimuscular myofascial force transmission occurs in the rat between the deep flexor muscles and their antagonistic muscles. DOI: 10.1016/j.jelekin.2008.09.012

  38. Yucesoy, C. A., Baan, G. C., Koopman, H. J. F. M., Grootenboer, H. J., and Huijing, P. A., Pre-strained epimuscular connections cause muscular myofascial force transmission to affect properties of synergistic EHL and EDL muscles of the rat. DOI: 10.1115/1.1992523

  39. Yucesoy, C. A. and Huijing, P. A., Substantial effects of epimuscular myofascial force transmission on muscular mechanics have major implications on spastic muscle and remedial surgery. DOI: 10.1016/j.jelekin.2007.02.008

  40. Yucesoy, C. A. and Huijing, P. A., Assessment by finite element modeling indicates that surgical intramuscular aponeurotomy performed closer to the tendon enhances intended acute effects in extramuscularly connected muscle. DOI: 10.1115/1.3005156

  41. Yucesoy, C. A., Koopman,H. J. F. M., Baan, G. C., Grootenboer, H. J., and Huijing, P. A., Effects of inter- and extramuscular myofascial force transmission on adjacent synergistic muscles: Assessment by experiments and finite element modeling. DOI: 10.1016/S0021-9290(03)00230-6

  42. Yucesoy, C. A., Koopman, H. J. F. M., Baan, G. C., Grootenboer, H. J., and Huijing, P. A., Extramuscular myofascial force transmission: Experiments and finite element modeling. DOI: 10.1080/13813450312331337630

  43. Yucesoy, C. A., Koopman, H. J. F. M., Grootenboer, H. J., and Huijing, P. A., Finite element modeling of aponeurotomy: Altered intramuscular myofascial force transmission yields complex sarcomere length distributions determining acute effects. DOI: 10.1007/s10237-006-0051-0

  44. Yucesoy, C. A., Koopman, H. J. F. M., Grootenboer, H. J., and Huijing, P. A., Extramuscular myofascial force transmission alters substantially the acute effects of surgical aponeurotomy: Assessment by finite element modeling. DOI: 10.1007/s10237-007-0084-z

  45. Yucesoy, C. A., Koopman, H. J. F. M., Huijing, P. A., and Grootenboer, H. J., Finite element modeling of intermuscular interactions and myofascial force transmission.

  46. Yucesoy, C. A., Koopman, H. J. F. M., Huijing, P. A., and Grootenboer, H. J., Three-dimensional finite element modeling of skeletal muscle using a two-domain approach: Linked fiber-matrix mesh model. DOI: 10.1016/S0021-9290(02)00069-6

  47. Yucesoy, C. A., Maas, H., Koopman, H. J. F. M., Grootenboer, H. J., and Huijing, P. A., Mechanisms causing effects of muscle position on proximo-distal muscle force differences in extra-muscular myofascial force transmission. DOI: 10.1016/j.medengphy.2005.06.004

  48. Zuurbier, C. J., Heslinga, J. W., Lee-deGroot, M. B., and van der Laarse, W. J., Mean sarcomere length-force relationship of rat muscle fibre bundles. DOI: 10.1016/0021-9290(95)80009-3


Articles with similar content:

FULL COUPLING RESPONSE OF SINGLE-WALLED CARBON NANOTUBES
International Journal for Multiscale Computational Engineering, Vol.11, 2013, issue 1
Hongwu Zhang, Jin Bao Wang, Xu Guo
From the Gait Laboratory to the Rehabilitation Clinic: Translation of Motion Analysis and Modeling Data to Interventions That Impact Anterior Cruciate Ligament Loads in Gait and Drop Landing
Critical Reviews™ in Biomedical Engineering, Vol.41, 2013, issue 3
Thomas Kernozek, John Willson, Christopher J. Durall, Kevin Shelburne, Michael Torry
Muscle Characteristics and Fatigue Properties After Spinal Cord Injury
Critical Reviews™ in Biomedical Engineering, Vol.37, 2009, issue 1-2
Chelsea A. Pelletier, Audrey L. Hicks
The Mechanobiology of Drug-Induced Cardiac Valve Disease
Journal of Long-Term Effects of Medical Implants, Vol.25, 2015, issue 1-2
Kartik Balachandran, Ngoc Thien Lam
Multiscale Transformation Field Analysis of Progressive Damage in Fibrous Laminates
International Journal for Multiscale Computational Engineering, Vol.8, 2010, issue 1
Ritesh Khire, Prabhat Hajela, Yehia Bahei-El-Din