Inscrição na biblioteca: Guest
Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa
International Journal for Multiscale Computational Engineering
Fator do impacto: 1.016 FI de cinco anos: 1.194 SJR: 0.554 SNIP: 0.68 CiteScore™: 1.18

ISSN Imprimir: 1543-1649
ISSN On-line: 1940-4352

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.v9.i3.50
pages 327-346

OVERALL ELASTIC PROPERTIES OF POLYSILICON FILMS: A STATISTICAL INVESTIGATION OF THE EFFECTS OF POLYCRYSTAL MORPHOLOGY

Stefano Mariani
Politecnico di Milano, Dipartimento di Ingegneria Strutturale, Italy
Roberto Martini
Politecnico di Milano, Dipartimento di Ingegneria Strutturale, Italy
Aldo Ghisi
Politecnico di Milano, Dipartimento di Ingegneria Strutturale, Italy
Alberto Corigliano
Politecnico di Milano, Dipartimento di Ingegneria Strutturale, Italy
Marco Beghi
Politecnico di Milano, Dipartimento di Energia, NEMAS-Center for NanoEngineered Materials and Surfaces, Italy

RESUMO

In this paper we investigate the effects of polycrystal morphology on the overall properties of polysilicon. Focusing on two-dimensional representative volume elements (RVEs) of textured films, we numerically generate digital polycrystal morphologies through Voronoi tessellations and assume the in-plane orientation of the crystal lattice of silicon grains to be randomly distributed. First, we show how a regularization provision for the Voronoi tessellations, adopted in order to better match the grain boundary (GB) geometry featured by actual polysilicon films, affects the statistics of an internal length-scale which naturally emerges because of the presence of GBs. Second, we provide a numerical homogenization technique to estimate the overall in-plane elastic moduli of the polysilicon film and compare the outcomes with standard Voigt and Reuss bounds. Through this comparison, we furnish a way to also estimate the size of the RVE to get effective results. Third, through Monte Carlo simulations we investigate the effect of microstructural fluctuations on the scattering of the overall elastic moduli of polysilicon. We show that even when the RVE appears to be representative for a single polycrystal realization, the RVE might not be representative if one looks at the extreme values of the aforementioned scattered elastic moduli.


Articles with similar content:

INTERACTIONS BETWEEN MULTIPLE ENRICHMENTS IN EXTENDED FINITE ELEMENT ANALYSIS OF SHORT FIBER REINFORCED COMPOSITES
International Journal for Multiscale Computational Engineering, Vol.13, 2015, issue 6
Mason A. Hickman, Matthew G. Pike, Caglar Oskay
A Nonlocal Formulation of Rubber Elasticity
International Journal for Multiscale Computational Engineering, Vol.1, 2003, issue 1
Catalin Picu
IDENTIFICATION OF THERMAL RADIATION PROPERTIES OF DISPERSED MEDIA: COMPARISON OF DIFFERENT STRATEGIES
International Heat Transfer Conference 11, Vol.21, 1998, issue
Dominique Baillis, L.M. Moura, Jean-Francois Sacadura
RECONCILED TOP-DOWN AND BOTTOM-UP HIERARCHICAL MULTISCALE CALIBRATION OF BCC FE CRYSTAL PLASTICITY
International Journal for Multiscale Computational Engineering, Vol.15, 2017, issue 6
Aaron E. Tallman, David L. McDowell, Laura P. Swiler, Yan Wang
MULTISCALE MICROMORPHIC MODEL FOR THE PLASTIC RESPONSE OF CU THIN FILM
International Journal for Multiscale Computational Engineering, Vol.11, 2013, issue 1
J. F. Nie, Yuan Gao, Zhuo Zhuang, X. C. You, Z. L. Liu, Zhaohui Zhang