Inscrição na biblioteca: Guest
International Journal for Multiscale Computational Engineering

Publicou 6 edições por ano

ISSN Imprimir: 1543-1649

ISSN On-line: 1940-4352

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.4 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.3 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 2.2 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00034 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.46 SJR: 0.333 SNIP: 0.606 CiteScore™:: 3.1 H-Index: 31

Indexed in

A Coupled Discrete/Continuum Model for Multiscale Diffusion

Volume 3, Edição 3, 2005, pp. 257-266
DOI: 10.1615/IntJMultCompEng.v3.i3.10
Get accessGet access

RESUMO

A method is developed to model continuum (finite element) and discrete [kinetic Monte Carlo (kMC)] diffusion occurring simultaneously in connected regions of space. The two regions are coupled across an interface using an iterative domain-decomposition approach in which time-dependent boundary conditions are applied on the kMC region (concentration) and on the continuum region (flux). Evolving forward in small time increments permits iterations in the kMC region to be performed only in a narrow band near the interface. An on-the-fly convergence criterion based on the inherent fluctuations in the discrete problem is developed. Application to the decay of a Gaussian concentration profile demonstrates the accuracy and efficiency of the method. Generalizations to more complex problems in two and three dimensions, and with spatially varying diffusivity due to interactions or applied stress fields, are straightforward.

CITADO POR
  1. Fragkopoulos Ioannis S., Theodoropoulos Constantinos, Multi-scale Modelling of Electrochemically Promoted Systems, Electrochimica Acta, 150, 2014. Crossref

Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa Políticas de preços e assinaturas Begell House Contato Language English 中文 Русский Português German French Spain