Inscrição na biblioteca: Guest
Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa
International Journal for Multiscale Computational Engineering
Fator do impacto: 1.016 FI de cinco anos: 1.194 SJR: 0.452 SNIP: 0.68 CiteScore™: 1.18

ISSN Imprimir: 1543-1649
ISSN On-line: 1940-4352

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.2016016951
pages 367-387

MULTISCALE MODEL FOR DAMAGE-FLUID FLOW IN FRACTURED POROUS MEDIA

Richard Wan
Civil Engineering Department, Schulich School of Engineering, University of Calgary, AB T2N 1N4, Canada
Mahdad Eghbalian
Civil Engineering Department, Schulich School of Engineering, University of Calgary, AB T2N 1N4, Canada

RESUMO

The paper deals with a closed-form continuum description of coupled fluid flow-deformation behavior of porous media with distributed strong discontinuities. Based on the underlying physics of the solid and fluid phases at the microscale, the macroscopic hydro-mechanical (HM) behavior of a representative elementary volume is eventually retrieved in the fully saturated case using the mean-field theory and Mori-Tanaka Homogenization Scheme. The heterogeneity that governs the overall HM behavior is induced by evolving microcracks described by a crack density distribution tensor. Herein, only the shape and orientation of microcracks are accounted for in the upscaling process. Examples are presented to assess the robustness of the proposed mathematical formulation. Finally, the evolution of heterogeneity in poromechanical parameters as well as hydraulic properties of the system is investigated by coupling a microcrack growth formulation under general loading conditions with fluid flow. We will briefly discuss, through material point simulations, how the proposed model can capture localized deformations and corresponding fluid transmission behavior starting from an initially homogeneous state.


Articles with similar content:

NONLOCAL GRADIENT-DEPENDENT CONSTITUTIVE MODEL FOR SIMULATING LOCALIZED DAMAGE AND FRACTURE OF VISCOPLASTIC SOLIDS UNDER HIGH-ENERGY IMPACTS
International Journal for Multiscale Computational Engineering, Vol.10, 2012, issue 5
Anthony N. Palazotto, Rashid K. Abu Al-Rub
ESSENTIAL FEATURES OF FINE SCALE BOUNDARY CONDITIONS FOR SECOND GRADIENT MULTISCALE HOMOGENIZATION OF STATISTICAL VOLUME ELEMENTS
International Journal for Multiscale Computational Engineering, Vol.10, 2012, issue 5
David L. McDowell, Darby Luscher, Curt Bronkhorst
COMPUTATIONAL HOMOGENIZATION METHOD AND REDUCED DATABASE MODEL FOR HYPERELASTIC HETEROGENEOUS STRUCTURES
International Journal for Multiscale Computational Engineering, Vol.11, 2013, issue 3
Julien Yvonnet, Qi-Chang He, Eric Monteiro
Nonlocal Elastic-Damage Interface Mechanical Model
International Journal for Multiscale Computational Engineering, Vol.5, 2007, issue 2
Guido Borino, Francesco Parrinello, Boris Failla
Analysis and Numerical Simulation of Discontinuous Displacements Modeling Fine Scale Damage in a Continuum Under Mixed-Mode Loading
International Journal for Multiscale Computational Engineering, Vol.2, 2004, issue 4
Krishna Garikipati