Inscrição na biblioteca: Guest
Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa
International Journal for Multiscale Computational Engineering
Fator do impacto: 1.016 FI de cinco anos: 1.194 SJR: 0.554 SNIP: 0.68 CiteScore™: 1.18

ISSN Imprimir: 1543-1649
ISSN On-line: 1940-4352

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.v8.i4.60
pages 423-439

Equation-Free Accelerated Simulations of the Morphological Relaxation of Crystal Surfaces

Gregory J. Wagner
Sandia National Laboratories, Livermore, California, and Albuquerque, New Mexico
Xiaowang Zhou
Sandia National Laboratories, Livermore, California, and Albuquerque, New Mexico
Steven J. Plimpton
Sandia National Laboratories, Livermore, California, and Albuquerque, New Mexico


A method for accelerating kinetic Monte Carlo simulations of solid surface morphology evolution, based on the equationfree projective integration (EFPI) technique, is developed and investigated. This method is demonstrated through application to the 1+1 dimensional solid-on-solid model for surface evolution. EFPI exploits the multiscale nature of a physics problem, using fine-scale simulations at short times to evolve coarse length scales over long times. The method requires identification of a set of coarse variables that parameterize the system, and it is found that the most obvious coarse variables for this problem, those related to the ensemble-averaged surface position, are inadequate for capturing the dynamics of the system. This is remedied by including among the coarse variables a statistical description of the fine scales in the problem, which in this case can be captured by a two-point correlation function. Projective integration allows speedup of the simulations, but if speed-up of more than a factor of around 3 is attempted the solution can become oscillatory or unstable. This is shown to be caused by the presence of both fast and slow components of the two-point correlation function, leading to the equivalent of a stiff system of equations that is hard to integrate. By fixing the fast components of the solution over each projection step, we are able to achieve speedups of a factor of 20 without oscillations, while maintaining accuracy.


  1. Bartelt, N. C., Theis, W., and Tromp, R. M., Ostwald ripening of two-dimensional islands on Si(001). DOI: 10.1103/PhysRevB.54.11741

  2. Chatterjee, A. and Vlachos, D. G., An overview of spatial microscopic and accelerated kinetic monte carlo methods. DOI: 10.1007/s10820-006-9042-9

  3. Chen, L., Debenedetti, P. G., Gear, C. W., and Kevrekidis, I. G., From molecular dynamics to coarse self-similar solutions: A simple example using equation-free computation. DOI: 10.1016/j.jnnfm.2003.12.007

  4. Gear, C. W., Kaper, T. J., Kevrekidis, I. G., and Zagaris, A., Projecting to a slow manifold: Singularly perturbed systems and legacy codes. DOI: 10.1137/040608295

  5. Gear, C. W. and Kevrekidis, I. G., Projective methods for stiff differential equations: Problems with gaps in their eigenvalue spectrum. DOI: 10.1137/S1064827501388157

  6. Gear, C. W. and Kevrekidis, I. G., Constraint-defined manifolds: A legacy code approach to low-dimensional computation. DOI: 10.1007/s10915-004-4630-x

  7. Henkelman, G. and Jonsson, H., Long time scale kinetic Monte Carlo simulations without lattice approximation and predefined event table. DOI: 10.1063/1.1415500

  8. Huang, H. C., Gilmer, G. H., and de la Rubia, T. D., An atomistic simulator for thin film deposition in three dimensions. DOI: 10.1063/1.368539

  9. Jiang, Z. and Ebner, C., Simulations of low-temperature annealing of crystal surfaces. DOI: 10.1103/PhysRevB.53.11146

  10. Kevrekidis, I. G., Gear, C.W., Hyman, J. M., Kevrekidis, P. G., Runborg, O., and Theodoropoulos, C., Equation-free, coarse-grained multiscale computation: Enabling microscopic simulators to perform system-level analysis.

  11. Kevrekidis, I. G. and Samaey, G., Equation-free multiscale computation: Algorithms and applications. DOI: 10.1146/annurev.physchem.59.032607.093610

  12. Klars, J. and Selke, W., Disordered flat phase of a crystal surface: Critical and dynamic properties. DOI: 10.1103/PhysRevB.74.073405

  13. Leamy, H., Gilmer, G., and Jackson, K., Statistical thermodynamics of clean surfaces.

  14. Li, J., Kevrekidis, P. G., Gear, C. W., and Kevrekidis, I. G., Deciding the nature of the coarse equation through microscopic simulations: The baby-bathwater scheme. DOI: 10.1137/s1540345902419161

  15. Loeve, M., Probability Theory.

  16. Mullins, W. W., Theory of thermal grooving. DOI: 10.1063/1.1722742

  17. Murty, M. V. R., Morphological stability of nanostructures. DOI: 10.1103/PhysRevB.62.17004

  18. Murty, M. V. R. and Cooper, B. H., Dynamics of surface profile evolution through surface diffusion. DOI: 10.1103/PhysRevB.54.10377

  19. Nichols, F. A. and Mullins, W. W., Morphological changes of a surface of revolution due to capillarity-induced surface diffusion. DOI: 10.1063/1.1714360

  20. Oskay, C. and Fish, J., Fatigue life prediction using two-scale temporal asymptotic homogenization. DOI: 10.1002/nme.1069

  21. Plimpton, S. J., Spparks kinetic Monte Carlo simulator.

  22. Plimpton, S. J., Battalie, C. C., Chandross, M. E., Holm, E. A., Thompson, A. P., Tikare, V., Wagner, G. J., Webb, E. B., Zhou, X., Garcia Cardona, C., and Slepoy, A., Crossing the mesoscale no-man’s land via parallel kinetic Monte Carlo. DOI: 10.2172/966942

  23. Quiblier, J. A., A new three-dimensional modeling technique for studying porous-media. DOI: 10.1016/0021-9797(84)90481-8

  24. Searson, P. C., Li, R., and Sieradzki, K., Surface-diffusion in the solid-on-solid model. DOI: 10.1103/PhysRevLett.74.1395

  25. Selke, W. and Bieker, T., Morphological-changes of periodic surface profiles. DOI: 10.1016/0039-6028(93)90866-I

  26. Selke, W. and Duxbury, P. M., Surface profile evolution above roughening. DOI: 10.1007/BF01320684

  27. Selke, W. and Duxbury, P. M., Equilibration of crystal surfaces. DOI: 10.1103/PhysRevB.52.17468

  28. Shay, M. A., Drake, J. F., and Dorland, B., Equation free projective integration: A multiscale method applied to a plasma ion acoustic wave. DOI: 10.1016/

  29. Shim, Y., Amar, J. G., Uberuaga, B. P., and Voter, A. F., Reaching extended length scales and time scales in atomistic simulations via spatially parallel temperature-accelerated dynamics. DOI: 10.1103/PhysRevB.76.205439

  30. Sorensen, M. R. and Voter, A. F., Temperature-accelerated dynamics for simulation of infrequent events. DOI: 10.1063/1.481576

  31. Sriraman, S., Kevrekidis, I. G., and Hummer, G., Coarse nonlinear dynamics and metastability of filling-emptying transitions: Water in carbon nanotubes. DOI: 10.1103/PhysRevLett.95.130603

  32. Szalma, F., Selke, W., and Fischer, S., Dynamics of surface steps. DOI: 10.1016/S0378-4371(01)00035-8

  33. Tenenbaum, J. B., de Silva, V., and Langford, J. C., A global geometric framework for nonlinear dimensionality reduction. DOI: 10.1126/science.290.5500.2319

  34. Uberuaga, B. P., Hoagland, R. G., Voter, A. F., and Valone, S. M., Direct transformation of vacancy voids to stacking fault tetrahedra. DOI: 10.1103/PhysRevLett.99.135501

  35. Voter, A. F., Parallel replica method for dynamics of infrequent events. DOI: 10.1103/PhysRevB.57.R13985

  36. Voter, A. F., Montalenti, F., and Germann, T. C., Extending the time scale in atomistic simulation of materials. DOI: 10.1146/annurev.matsci.32.112601.141541

  37. Xiu, D. B. and Kevrekidis, I. G., Equation-free, multiscale computation for unsteady random diffusion. DOI: 10.1137/040615006

  38. Yeong, C. L. Y. and Torquato, S., Reconstructing random media. DOI: 10.1103/PhysRevE.57.495