Inscrição na biblioteca: Guest
Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa
International Journal for Multiscale Computational Engineering
Fator do impacto: 1.016 FI de cinco anos: 1.194 SJR: 0.554 SNIP: 0.82 CiteScore™: 2

ISSN Imprimir: 1543-1649
ISSN On-line: 1940-4352

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.2018027813
pages 151-180


Philipp Junker
Ruhr University Bochum, Bochum, Germany
Stephan Schwarz
Ruhr University Bochum, Bochum, Germany
Dustin R. Jantos
Ruhr University Bochum, Bochum, Germany
Klaus Hackl
Ruhr University Bochum, Bochum, Germany


Damage processes are modeled by a softening behavior in a stress/strain diagram. This reveals that the stiffness loses its ellipticity and the energy is thus not coercive. A numerical implementation of such ill-posed problems yields results that are strongly dependent on the chosen spatial discretization. Consequently, regularization strategies have to be employed that render the problem well-posed. A prominent method for regularization is a gradient enhancement of the free energy. This, however, results in field equations that have to be solved in parallel to the Euler-Lagrange equation for the displacement field. An usual finite element treatment thus deals with an increased number of nodal unknowns, which remarkably increases numerical costs. We present a gradient-enhanced material model for brittle damage using Hamilton's principle for nonconservative continua. We propose an improved algorithm, which is based on a combination of the finite element and strategies from meshless methods, for a fast update of the field function. This treatment keeps the numerical effort limited and close to purely elastic problems. Several boundary value problems prove the mesh-independence of the results.


  1. Altenbach, H., Huang, C., and Naumenko, K., Creep-Damage Predictions in Thin-Walled Structures by Use of Isotropic and Anisotropic Damage Models, J. Strain Anal. Eng. Design, vol. 37, no. 3, pp. 265-275,2002.

  2. Anderson, T.L., Fracture Mechanics: Fundamentals and Applications, CRC Press, 2017. Bailey, C., The Unifying Laws of Classical Mechanics, Foundations Phys., vol. 32, no. 1, pp. 159-176,2002.

  3. Basic, J., Degiuli, N., and Ban, D., A Class of Renormalised Meshless Laplacians for Boundary Value Problems, J. Comput. Phys, vol. 354, pp. 269-287,2018.

  4. Bazant, Z. and Jirasek, M., Nonlocal Integral Formulations of Plasticity and Damage: Survey of Progress, J. Eng. Mech, vol. 128, no. 11, pp. 1119-1149,2002.

  5. Bedford, A., Hamilton's Principle in Continuum Mechanics, vol. 139, Pitman Advanced Publishing Program, 1985. Brepols, T., Wulfinghoff, S., and Reese, S., Gradient-Extended Two-Surface Damage-Plasticity: Micromorphic Formulation and Numerical Aspects, Int. J. Plasticity, vol. 97, pp. 64-106,2017.

  6. Brepols, T., Wulfinghoff, S., and Reese, S., A Micromorphic Damage-Plasticity Model to Counteract Mesh Dependence in Finite Element Simulations Involving Material Softening, in Multiscale Modeling of Heterogeneous Structures, Springer, pp. 235-255, 2018.

  7. Carstensen, C., Hackl, K., and Mielke, A., Non-Convex Potentials and Microstructures in Finite-Strain Plasticity, Proc. Royal Soci. London. Series A: Math. Phys. Eng. Sci., vol. 458, no. 2018, pp. 299-317,2002.

  8. Dimitrijevic, B., Aifantis, K., and Hackl, K., The Influence of Particle Size and Spacing on the Fragmentation of Nanocomposite Anodes for Li Batteries, J. Power Sources, vol. 206, pp. 343-348,2012.

  9. Dimitrijevic, B. and Hackl, K., A Method for Gradient Enhancement of Continuum Damage Models, Tech. Mech., vol. 28, no. 1, pp. 43-52, 2008.

  10. Dimitrijevic, B. and Hackl, K., A Regularization Framework for Damage-Plasticity Models via Gradient Enhancement of the Free Energy, Int. J. Num. Methods Biomed. Eng., vol. 27, no. 8, pp. 1199-1210,2011.

  11. Faria, R., Oliver, J., and Cervera, M., A Strain-Based Plastic Viscous-Damage Model for Massive Concrete Structures, Int. J. Solids Struct., vol. 35,no. 14, pp. 1533-1558,1998.

  12. Forest, S. and Lorentz, E., Local Approach to Fracture, Presse des Mines, Ch. Localization and Regularization, 2004.

  13. Gross, D. and Seelig, T., Fracture Mechanics: with an Introduction to Micromechanics, Springer, 2017.

  14. Hackl, K. and Fischer, F., On the Relation between the Principle of Maximum Dissipation and Inelastic Evolution Given by Dissipation Potentials, Proc. Royal Soc. A: Math. Phys. Eng. Sci., vol. 464, no. 2089, pp. 117-132,2008.

  15. Hackl, K., Fischer, F., and Svoboda, J., A Study on the Principle of Maximum Dissipation for Coupled and Non-Coupled Non-Isothermal Processes in Materials, Proc.: Math. Phys. Eng. Sci, vol. 467, pp. 1186-1196,2011.

  16. Hamilton, W., On a General Method in Dynamics; by Which the Study of the Motions of All Free Systems of Attracting or Repelling Points is Reduced to the Search and Differentiation of One Central Relation, or Characteristic Function, Philosoph. Trans. Royal Soc. London, vol. 124, pp. 247-308,1834.

  17. Hamilton, W., Second Essay on a General Method in Dynamics, Philosoph. Trans. Royal Soc. London, vol. 125, pp. 95-144,1835.

  18. Hertzberg, R.W., Deformation and Fracture Mechanics of Engineering Materials, Wiley, 1989.

  19. Jantos, D.R., Junker, P., and Hackl, K., Optimized Growth and Reorientation of Anisotropic Material based on Evolution Equations, Comput. Mech., vol. 62, pp. 47-66,2018.

  20. Jantos, D.R., Junker, P., and Hackl, K., An Accurate and Fast Regularization Approach to Thermodynamic Topology Optimization, Int. J. Num. Methods Eng., vol. 117, pp. 991-1017,2019.

  21. Junker, P. and Hempel, P., Numerical Study of the Plasticity-Induced Stabilization Effect on Martensitic Transformations in Shape Memory Alloys, Shape Memory Superelasticity, vol. 3, no. 4, pp. 422-430,2017.

  22. Junker, P., Makowski, J., and Hackl, K., The Principle of the Minimum of the Dissipation Potential for Non-Isothermal Processes, ContinuumMech. Thermodynam., vol. 26, no. 3, pp. 259-268,2014.

  23. Junker, P. and Nagel, J., An Analytical Approach to Modeling the Stochastic Behavior of Visco-Elastic Materials, ZAMM-J. Appl. Math. Mech./Zeitschrift Angewandte MathematikMechanik, vol. 98, pp. 1249-1260,2018.

  24. Junker, P., Schwarz, S., Makowski, J., and Hackl, K., A Relaxation-Based Approach to Damage Modeling, Continuum Mech. Thermodynam, vol. 29, pp. 291-310,2017.

  25. Langenfeld, K., Junker, P., and Mosler, J., Quasi-Brittle Damage Modeling based on Incremental Energy Relaxation Combined with a Viscous-Type Regularization, Continuum Mech. Thermodynam., vol. 30, pp. 1125-1144,2018.

  26. Lemaitre, J., A Continuous Damage Mechanics Model for Ductile Fracture, J. Eng. Mat. Technol., vol. 107, no. 1,pp. 83-89,1985.

  27. Lemaitre, J. and Desmorat, R., Engineering Damage Mechanics: Ductile, Creep, Fatigue and Brittle Failures, Berlin Heidelberg: Springer-Verlag, 2005.

  28. Matzenmiller, A.L.J.T.R., Lubliner, J., and Taylor, R.L., A Constitutive Model for Anisotropic Damage in Fiber-Composites, Mech. Materials, vol. 20, no. 2, pp. 125-152,1995.

  29. Menzel, A., Ekh, M., Runesson, K., and Steinmann, P., A Framework for Multiplicative Elastoplasticity with Kinematic Hardening Coupled to Anisotropic Damage, Int. J. Plasticity, vol. 21, no. 3, pp. 397-434,2005.

  30. Miehe, C., Aldakheel, F., and Raina, A., Phase Field Modeling of Ductile Fracture at Finite Strains: A Variational Gradient-Extended Plasticity-Damage Theory, Int. J. Plasticity, vol. 84, pp. 1-32,2016a.

  31. Miehe, C., Hofacker, M., and Welschinger, F., A Phase Field Model for Rate-Independent Crack Propagation: Robust Algorithmic Implementation based on Operator Splits, Comput. Methods Appl. Mech. Eng., vol. 199, nos. 45-48, pp. 2765-2778,2010a.

  32. Miehe, C. and Keck, J., Superimposed Finite Elastic-Viscoelastic-Plastoelastic Stress Response with Damage in Filled Rubbery Polymers. Experiments, Modelling and Algorithmic Implementation, J. Mech. Phys. Solids, vol. 48, no. 2, pp. 323-365,2000.

  33. Miehe, C., Teichtmeister, S., and Aldakheel, F., Phase-Field Modelling of Ductile Fracture: A Variational Gradient-Extended Plasticity-Damage Theory and Its Micromorphic Regularization, Phil. Trans. R. Soc. A, vol. 374, no. 2066, p. 20150170,2016b.

  34. Miehe, C., Welschinger, F., and Hofacker, M., Thermodynamically Consistent Phase-Field Models of Fracture: Variational Principles and Multi-Field FE Implementations, Int. J. Num. Methods Eng., vol. 83, no. 10, pp. 1273-1311,2010b.

  35. Mosler, J., Langefeld, K., and Junker, P., Quasi-Brittle Damage Modeling based on Incremental Energy Relaxation Combined with a Viscous-Type Regularization, Contin. Mech. Thermodyn, vol. 30, pp. 1125-1144,2018.

  36. Naumenko, K., Altenbach, H., and Kutschke, A., A Combined Model for Hardening, Softening, and Damage Processes in Advanced Heat Resistant Steels At Elevated Temperature, Int. J. Damage Mech, vol. 20, no. 4, pp. 578-597,2011.

  37. Needleman, A., Material Rate Dependence and Mesh Sensitivity in Localization Problems, Comput. Methods Appl. Mech. Eng., vol. 67, pp. 69-85,1988.

  38. Pandolfi, A. and Ortiz, M., An Eigenerosion Approach to Brittle Fracture, Int. J. Num. Methods Eng., vol. 92, no. 8, pp. 694-714, 2012.

  39. Peerlings, R., De Borst, R., Brekelmans, W., and De Vree, J., Computational Modelling of Gradient-Enhanced Damage for Fracture and Fatigue Problems, Comput. Plasticity, Fundamentals Appl.: Proc. 4th Int. Conf, Swansea, UK: Pine Ridge Press, pp. 975-986,1995.

  40. Peerlings, R., De Borst, R., Brekelmans, W., and Geers, M., Gradient-Enhanced Damage Modelling of Concrete Fracture, Mech. Cohesive-Fractional Materials, vol. 3, no. 4, pp. 323-342,1998.

  41. Peerlings, R., Geers, M., de Borst, R., and Brekelmans, W., A Critical Comparison of Nonlocal and Gradient-Enhanced Softening Continua, Int. J. Solids Structures, vol. 38, no. 44, pp. 7723-7746,2001.

  42. Pezeshki, M., Loehnert, S., Guidault, P.A., Baranger, E., and Wriggers, P., Dynamic Brittle Fracture by XFEM and Gradient-Enhanced Damage, Proc. 5th International Conference on Computational Modeling of Fracture and Failure of Materials and Structures, CFRAC 2017,2017.

  43. Pezeshki, M., Loehnert, S., Wriggers, P., Guidault, P.A., and Baranger, E., 3D Dynamic Crack Propagation by the Extended Finite Element Method and a Gradient-Enhanced Damage Model, in Multiscale Modeling of Heterogeneous Structures, Springer, pp. 277-299,2018.

  44. Prax, C., Sadat, H., and Salagnac, P., Diffuse Approximation Method for Solving Natural Convection in Porous Media, Transport Porous Media, vol. 22, no. 2, pp. 215-223,1996.

  45. Schmidt, B., Fraternali, F., and Ortiz, M., Eigenfracture: An Eigendeformation Approach to Variational Fracture, Multiscale Model. Simul., vol. 7, no. 3, pp. 1237-1266,2009.

  46. Simo, J., Oliver, J., and Armero, F., An Analysis of Strong Discontinuities Induced by Strain Softening in Rate-Independent Inelastic Solids, Comput. Mech., vol. 12, pp. 277-296,1993.

  47. Stacey, R., New Finite-Difference Methods for Free Surfaces with a Stability Analysis, Bulletin Seismological Soc. Am., vol. 84, no. 1,pp. 171-184,1994.

  48. Strobl, M. and Seelig, T., A Novel Treatment of Crack Boundary Conditions in Phase Field Models of Fracture, PAMM, vol. 15, no. 1,pp. 155-156,2015.

  49. Strobl, M. and Seelig, T., On Constitutive Assumptions in Phase Field Approaches to Brittle Fracture, Procedia Struct. Integrity, vol. 2, pp. 3705-3712,2016.

  50. Suffis, A., Lubrecht, T.A.A., and Combescure, A., Damage Model with Delay Effect: Analytical and Numerical Studies of the Evolution of the Characteristic Damage Length, Int. J. Solids Struct, vol. 40, nos. 13-14, pp. 3463-3476,2003.

  51. Wriggers, P. and Moftah, S., Mesoscale Models for Concrete: Homogenisation and Damage Behaviour, Finite Elements Anal. Design, vol. 42, no. 7, pp. 623-636,2006.

Articles with similar content:

International Journal for Multiscale Computational Engineering, Vol.16, 2018, issue 6
Z. F. Yuan, Dinghe Li, Jacob Fish
International Journal for Multiscale Computational Engineering, Vol.12, 2014, issue 6
Seung-Kyum Choi, Recep Gorguluarslan
Diego C. Knupp, Carolina Palma Naveira-Cotta, Renato M. Cotta
Journal of Porous Media, Vol.23, 2020, issue 5
J. I. Siddique, Umair Farooq
Efficient Sampling in 3-D Stereologic Volumetry
Critical Reviews™ in Biomedical Engineering, Vol.28, 2000, issue 3&4
Jagath C. Rajapakse, Lee Kian Keong