Inscrição na biblioteca: Guest
Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa
International Journal for Multiscale Computational Engineering
Fator do impacto: 1.016 FI de cinco anos: 1.194 SJR: 0.554 SNIP: 0.82 CiteScore™: 2

ISSN Imprimir: 1543-1649
ISSN On-line: 1940-4352

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.2019026387
pages 223-237

ON PRESSURIZED FUNCTIONALIZED PARTICLE-LADEN FLUID INFILTRATION INTO POROUS MEDIA

Tarek I Zohdi
Eduardo M. B. Campello
Department of Structural and Geotechnical Engineering, University of São Paulo, P.O. Box 61548, 05424-970, São Paulo, SP, Brazil

RESUMO

In many emerging applications, the controlled infiltration of specially designed particle-laden fluids into porous media is critical. The added materials are often chosen with the objective to mechanically, electrically, or magnetically functionalize the overall material. Because of the increased viscosity of particle-laden fluids and the pore-dependent permeability of the medium to be infiltrated, there is a rich choice of parameters that govern the overall process: (i) the base viscosity of the solvent, (ii) the volume fraction of particles in the fluid, (iii) the pore volume fraction of the porous medium, and (iv) the absolute permeability of the medium. This paper develops Darcy-law–like expressions relating the infiltration flow rate of particle-laden fluids to the pressure gradient on porous solids, as a function of the four above parameters. General trends of the process may be satisfactorily described with the derived analytical expressions, yet at an affordable cost on accuracy for rapid daily design analysis. The paper then develops direct, large-scale numerical simulations based on the discrete element method to illustrate the practical use of the proposed relations.

Referências

  1. Avci, B. and Wriggers, P., A DEM-FEM Coupling Approach for the Direct Numerical Simulation of 3D Particulate Flows, J. Appl. Mech., vol. 79, p. 010901,2012.

  2. Biringen, S. and Chow, C.-Y., An Introduction to Computational Fluid Mechanics by Example, Hoboken, NJ: Wiley, 2011.

  3. Bolintineanu, D.S., Grest, G.S., Lechman, J.B., Pierce, F., Plimpton, S.J., and Schunk, P.R., Particle Dynamics Modeling Methods for Colloid Suspensions, Comput. Particle Mech., vol. 1, no. 3, pp. 321-356, 2014.

  4. Campello, E.M.B., A Description of Rotations for DEM Models of Particle Systems, Comput. Particle Mech, vol. 2, pp. 109-125, 2015a.

  5. Campello, E.M.B., Computational Modeling and Simulation of Rupture of Membranes and Thin Films, J. Brazil. Soc. Mech. Sci. Eng., vol. 37, pp. 1793-1809, 2015b.

  6. Campello, E.M.B., A Computational Model for the Simulation of Dry Granular Materials, Int. J. Nonlinear Mech., vol. 106, pp. 89-107, 2018.

  7. Campello, E.M.B. and Cassares, K.R., Rapid Generation of Particle Packs at High Packing Ratios for DEM Simulations of Granular Compacts, Latin Am. J. Solids Struct., vol. 13, pp. 23-50, 2016.

  8. Campello, E.M.B. and Zohdi, T., A Computational Framework for Simulation of the Delivery of Substances into Cells, Int. J. Numer. Methods Biomed. Eng., vol. 30, pp. 1132-1152, 2014a.

  9. Campello, E.M.B. and Zohdi, T., Design Evaluation of a Particle Bombardment System Used to Deliver Substances into Cells, Comp. Model. Eng. Sci, vol. 98, no. 2, pp. 221-245,2014b.

  10. Cante, J., Davalos, C., Hernandez, J.A., Oliver, J., Jonsen, P., Gustafsson, F., and Haggblad, H.A., PFEM-Based Modeling of Industrial Granular Flows, Comput. Particle Mech., vol. 1, no. 1, pp. 47-70,2014.

  11. Carbonell, J.M., Onate, E., and Suarez, B., Modeling of Ground Excavation with the Particle Finite Element Method, J. Eng. Mech. (ASCE), vol. 136, pp. 455-463, 2010.

  12. Einstein, A., A New Determination of Molecular Dimensions, Ann. Phys., vol. 19, no. 4, p. 289306, 1906.

  13. Hashin, Z., Analysis of Composite Materials: A Survey, ASMEJ. Appl. Mech., vol. 50, pp. 481-505,1983.

  14. Hashin, Z. and Shtrikman, S., On Some Variational Principles in Anisotropic and Nonhomogeneous Elasticity, J. Mech. Phys. Solids, vol. 10, pp. 335-342, 1962.

  15. Hashin, Z. and Shtrikman, S., A Variational Approach to the Theory of the Elastic Behaviour of Multiphase Materials, J. Mech. Phys. Solids, vol. 11, pp. 127-140, 1963.

  16. Jikov, V.V., Kozlov, S.M., and Olenik, O.A., Homogenization of Differential Operators and Integral Functionals, Berlin: Springer-Verlag, 1994.

  17. Rojek, J., Labra, C., Su, O., and Ofiate, E., Comparative Study of Different Discrete Element Models and Evaluation of Equivalent Micromechanical Parameters, Int. J. Solids Struct., vol. 49, pp. 1497-1517, 2012.

  18. Johnson, K.L., Contact Mechanics, Cambridge: Cambridge University Press, 1985.

  19. Leonardi, A., Wittel, F.K., Mendoza, M., and Herrmann, H.J., Coupled DEM-LBM Method for the Free-Surface Simulation of Heterogeneous Suspensions, Comput. Particle Mech., vol. 1, no. 1, pp. 3-13, 2014.

  20. Markov, K.Z., Elementary Micromechanics of Heterogeneous Media, in Heterogeneous Media: Micromechanics Modeling Methods and Simulations, K.Z. Markov and L. Preziozi, Eds., Boston: Birkhauser, pp. 1-162, 2000.

  21. Mura, T., Micromechanics of Defects in Solids, Dordrecht, the Netherlands: Kluwer Academic Publishers, 1993.

  22. Muskat, M., The Flow of Homogeneous Fluids through Porous Media, New York: McGraw-Hill, 1937.

  23. Muskat, M. and Meres, M.W., The Flow of Heterogeneous Fluids through Porous Media. J. Appl. Phys, vol. 7, pp. 346-363,1936.

  24. Neto, A.G. and Campello, E.M.B., Granular Materials Interacting with Thin Flexible Rods, Comput. Particle Mech, vol. 4, no. 2, pp. 229-247, 2017.

  25. Ofiate, E., Celigueta, M.A., Idelsohn, S.R., Salazar, F., and Surez, B., Possibilities of the Particle Finite Element Method for Fluid-Soil-Structure Interaction Problems, Comput. Mech, vol. 48, pp. 307-318, 2011.

  26. Onate, E., Celigueta, M.A., Latorre, S., Casas, G., Rossi, R., and Rojek, J., Lagrangian Analysis of Multiscale Particulate Flows with the Particle Finite Element Method, Comput. Particle Mech, vol. 1, no. 1, pp. 85-102,2014.

  27. Ofiate, E., Idelsohn, S.R., Celigueta, M.A., and Rossi, R., Advances in the Particle-Finite Element Method for the Analysis of Fluid-Multibody Interaction and Bed Erosion in Free Surface Flows, Comput. Methods Appl. Mech. Eng., vol. 197, nos. 19-20, pp. 1777-1800,2008.

  28. Torquato, S., Random Heterogeneous Materials: Microstructure and Macroscopic Properties, New York: Springer-Verlag, 2002.

  29. Zohdi, T.I., Dynamics of Charged Particulate Systems: Modeling, Theory and Computation, New York: Springer, 2012.

  30. Zohdi, T.I., Computation of Strongly Coupled Multifield Interaction in Particle-Fluid Systems, Comput. Methods Appl. Mech. Eng., vol. 196, pp. 3927-3950,2007.

  31. Zohdi, T.I., Embedded Electromagnetically Sensitive Particle Motion in Functionalized Fluids, Comput. Particle Mech., vol. 1, pp. 27-45,2014.

  32. Zohdi, T.I., Monteiro, P.J.M., and Lamour, V., Extraction of Elastic Modulifrom Granular Compacts, Int. J. Fracture/Lett. Micromech, vol. 115, pp. L49-L54, 2002.


Articles with similar content:

4.2 Reduced Scale, Semi-Quantitative Modelling of Accident Behaviour in Water Reactor Primary Circuits Using Refrigerant 12
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 1980, issue
M. W. E. Coney
Analysis of radiative transfer in body fitted axisymmetric geometries with band models and anisotropic scattering
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 2017, issue
Rahul Yadav, Chakravarthy Balaji, S. P. Venkateshan
NUMERICAL SIMULATION METHOD, THEORY, AND APPLICATION OF THREE-PHASE (OIL, GAS, WATER) CHEMICAL-AGENT OIL RECOVERY IN POROUS MEDIA
Special Topics & Reviews in Porous Media: An International Journal, Vol.7, 2016, issue 3
Yirang Yuan, Danping Yang, Aijie Cheng, Changfeng Li
PARAMETER SENSITIVITY OF AN EDDY VISCOSITY MODEL: ANALYSIS, COMPUTATION AND ITS APPLICATION TO QUANTIFYING MODEL RELIABILITY
International Journal for Uncertainty Quantification, Vol.3, 2013, issue 5
Lisa Davis, Faranak Pahlevani
ON THE MULTISCALE TREATMENT OF MULTIFLUID FLOW
Multiphase Science and Technology, Vol.15, 2003, issue 1-4
True-Nam Dinh, Theo G. Theofanous, R. R. Nourgaliev