Inscrição na biblioteca: Guest
Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa
International Journal for Multiscale Computational Engineering
Fator do impacto: 1.016 FI de cinco anos: 1.194 SJR: 0.554 SNIP: 0.68 CiteScore™: 1.18

ISSN Imprimir: 1543-1649
ISSN On-line: 1940-4352

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.v4.i5-6.110
pages 771-790

On the Implementation of Plane Stress in Computational Multiscale Modeling

Robert Lillbacka
FS Dynamics, Molndalsvagen 24, SE-412 63 Goteborg; Chalmers University of Technology, Department of Applied Mechanics, SE-412 96 Göteborg; and Swedish National Testing and Research Institute (SP), Brinellgatan 4, Box 857, SE-50115 Borås, Sweden
Fredrik Larsson
Department of Applied Mechanics, Chalmers University of Technology, S-412 96 Gothenburg
Kenneth Runesson
Department of Structural Mechanics Chalmers, University of Technology S-41296 Goteborg, Sweden

RESUMO

Different aspects of the plane stress condition in concurrent two-scale computational (first-order) homogenization are discussed. The basic ingredient in computational homogenization is the calculation of the macroscale stress, for given macroscale deformation, via computations on a representative volume element (RVE). Two modeling assumptions are compared: The subscale (Hill-type) and macroscale-type (Taylor-type) plane stress conditions. The corresponding iterative strategies and the macroscale algorithmic tangent operators are derived using the primal (conventional) approach. The performance of the various iterative strategies are compared for a single RVE problem as well as in a fully concurrent analysis of a complex substructure (duplex stainless steel) under realistic subscale modeling based on crystal plasticity with hardening.


Articles with similar content:

ERROR CONTROLLED USE OF THE TAYLOR ASSUMPTION IN ADAPTIVE HIERARCHICAL MODELING OF DSS
International Journal for Multiscale Computational Engineering, Vol.13, 2015, issue 2
Robert Lillbacka, Kenneth Runesson, Fredrik Larsson
Multiscale Model for Damage Analysis in Fiber-Reinforced Composites with Interfacial Debonding
International Journal for Multiscale Computational Engineering, Vol.2, 2004, issue 4
Somnath Ghosh, Prasanna Raghavan
Microstructure-Based Multiscale Constitutive Modeling of γ — γ′ Nickel-Base Superalloys
International Journal for Multiscale Computational Engineering, Vol.4, 2006, issue 5-6
David L. McDowell, A.-J. Wang, M. M. Shenoy, R. S. Kumar
DISLOCATION CORE RECONSTRUCTION BASED ON FINITE DEFORMATION APPROACH AND ITS APPLICATION TO 4H-SiC CRYSTAL
International Journal for Multiscale Computational Engineering, Vol.12, 2014, issue 5
Marcin Maździarz, Pawel Dluzewski, Jan Cholewinski, Grzegorz Jurczak
3D SHARP-INTERFACE LEVEL-SET METHOD BASED CMFD DEVELOPMENT FOR HEAT TRANSFER INDUCED STEFAN PROBLEM
Proceedings of the 24th National and 2nd International ISHMT-ASTFE Heat and Mass Transfer Conference (IHMTC-2017), Vol.0, 2017, issue
Nitin Goyal, Atul Sharma, Javed Shaikh