Inscrição na biblioteca: Guest
Multiphase Science and Technology

Publicou 4 edições por ano

ISSN Imprimir: 0276-1459

ISSN On-line: 1943-6181

SJR: 0.144 SNIP: 0.256 CiteScore™:: 1.1 H-Index: 24

Indexed in

FROM ELEMENTARY PROCESSES TO THE NUMERICAL PREDICTION OF INDUSTRIAL PARTICLE-LADEN FLOWS

Volume 21, Edição 1-2, 2009, pp. 123-140
DOI: 10.1615/MultScienTechn.v21.i1-2.100
Get accessGet access

RESUMO

In particle-laden flows, the overall flow structure and the relevant process parameters, e.g., pressure drop or separation efficiency, are strongly affected by the elementary processes occurring on the scale of the particles. Therefore, a detailed modeling of these microscale phenomena is required when anticipating reliable numerical predictions. Here the Euler/Lagrange approach was further developed in order to calculate confined particle-laden flows in pneumatic conveying lines and gas cyclones. Special emphasis is placed on the influence of particle-wall collisions and wall roughness as well as interparticle collisions with possible agglomeration on the developing two-phase flow structure and the resulting process parameters. The models and the numerical method were validated based on the pressure drop measured along a 6-m horizontal channel. The agreement was found to be excellent for different particle sizes, mass loading, and wall roughness. The numerical predictions of a horizontal pipe flow revealed that due to a wall roughness-induced focusing of particle trajectories toward the core of the pipe, a secondary flow in the pipe cross section develops. Moreover, it was found that the additional pressure drop due to the particles in the pipe flow was higher than that in the channel due to the different wall collision behavior. The numerical calculations of particle separation in a gas cyclone revealed the importance of a detailed modeling of interparticle collisions and particle agglomeration on the resulting grade efficiency curves. Agglomeration improves the separation of fine particles substantially.

Referências
  1. Boysan, F., Ayers, W. H., and Swithenbank, J., A fundamental mathematical modelling approach to cyclone design.

  2. Derksen, J. J., Sundaresan, S., and van den Akker, H. E. A., Simulation of mass-loading effects in gas-solid cyclone separators. DOI: 10.1016/j.powtec.2006.01.006

  3. Frank, Th., Wassen, E., and Yu, Q., Lagrangian prediction of disperse gas-particle flow in cyclone separators.

  4. Gorton-Hulgerth, A. and Staudinger, G., Dreidimensionale Stromungssimulation in einem Gaszyklon mit Reynolds-Stress-Modell. DOI: 10.1002/cite.330710407

  5. Gouesbet, G. and Berlemont, A., Eulerian and Lagrangian approaches for predicting the behaviour of discrete particles in turbulent flows. DOI: 10.1016/S0360-1285(98)00018-5

  6. Hiller R., Der Einflub von Partikelstob und Partikelhaftung auf die Abscheidung in Faserfiltern.

  7. Ho, C. A. and Sommerfeld, M., Modelling of micro-particle agglomeration in turbulent flow. DOI: 10.1016/S0009-2509(02)00172-0

  8. Ho, C. A. and Sommerfeld, M., Numerische Berechnung der Staubabscheidung im Gaszyklon unter Berucksichtigung der Partikelagglomeration. DOI: 10.1002/cite.200407068

  9. Hoekstra, A. J., Derksen, J. J., and Van Den Akker, H. E. A., An experimental and numerical study of turbulent swirling flow in gas cyclones. DOI: 10.1016/S0009-2509(98)00373-X

  10. Hoekstra, A. J., Gas Flow Field and Collection Efficiency of Cyclone Separators.

  11. Kirch, R., Der Einflub der Turbulenz auf die Partikelbewegung im Gaszyklon. Fortschrittsberichte VDI.

  12. Kohnen, G., Ruger, M., and Sommerfeld, M., Convergence behaviour for numerical calculations by the Euler/Lagrange method for strongly coupled phases.

  13. Lai­n, S., Sommerfeld, M., and Kussin, J., Experimental studies and modelling of four-way coupling in particle-laden horizontal channel flow. DOI: 10.1016/S0142-727X(02)00160-1

  14. Lain, S. and Sommerfeld, M., Euler/Lagrange computations of pneumatic conveying in a horizontal channel with different wall roughness. DOI: 10.1016/j.powtec.2007.08.013

  15. Launder, B. E., Reece, G. J., and Rodi, W., Progress in the development of a Reynolds-stress turbulence closure. DOI: 10.1017/S0022112075001814

  16. Lun, C. K. K. and Liu, H. S., Numerical simulation of dilute turbulent gas-solid flows in horizontal channels. DOI: 10.1016/S0301-9322(96)00087-0

  17. Schuch, G. and Loffler, F., Uber die Abscheidewahrscheinlichkeit von Feststoffpartikeln an Tropfen in einer Gasstromung durch Tragheitseffekte.

  18. Shi, L. and Bayless, D. J., Comparison of boundary conditions for predicting the collection efficiency of cyclones. DOI: 10.1016/j.powtec.2006.11.022

  19. Simonin, O., Statistical and continuum modelling of turbulent reactive particulate flows: Part I. Theoretical derivation of dispersed phase Eulerian modelling from probability density function kinetic equation.

  20. Sommerfeld, M., Kohnen, G., and Ruger, M., Some open questions and inconsistencies of Lagrangian particle dispersion models.

  21. Sommerfeld, M., Modellierung und numerische Berechnung von partikelbeladenen turbulenten Stromungen mit Hilfe des Euler/Lagrange-Verfahrens.

  22. Sommerfeld, M., Modelling and numerical calculation of turbulent gas-solid flows with the Euler/Lagrange approach.

  23. Sommerfeld, M. and Huber, N., Experimental analysis and modelling of particle-wall collisions. DOI: 10.1016/S0301-9322(99)00047-6

  24. Sommerfeld, M., Validation of a stochastic Lagrangian modelling approach for inter-particle collisions in homogeneous isotropic turbulence. DOI: 10.1016/S0301-9322(01)00035-0

  25. Sommerfeld, M., Analysis of collision effects for turbulent gas-particle flow in a horizontal channel: Part I. Particle transport. DOI: 10.1016/S0301-9322(03)00031-4

  26. Sommerfeld, M. and Kussin, J., Wall roughness effects on pneumatic conveying of spherical particles in a narrow horizontal channel. DOI: 10.1016/j.powtec.2004.05.002

  27. Zaichik, L. I., Pershukov, V. A., Kozelev, M. V., and Vinberg, A. A., Modeling of dynamics, heat transfer, and combustion in two-phase turbulent flows. DOI: 10.1016/S0894-1777(97)00009-5

CITADO POR
  1. Laín Santiago, Sommerfeld Martin, Numerical calculation of pneumatic conveying in horizontal channels and pipes: Detailed analysis of conveying behaviour, International Journal of Multiphase Flow, 39, 2012. Crossref

  2. Sommerfeld Martin, Horender Stefan, Fluid Mechanics, in Ullmann's Encyclopedia of Industrial Chemistry, 2012. Crossref

  3. Laín Santiago, Sommerfeld Martin, Characterisation of pneumatic conveying systems using the Euler/Lagrange approach, Powder Technology, 235, 2013. Crossref

  4. Sommerfeld Martin, Lain Santiago, Parameters influencing dilute-phase pneumatic conveying through pipe systems: A computational study by the Euler/Lagrange approach, The Canadian Journal of Chemical Engineering, 93, 1, 2015. Crossref

  5. Sommerfeld M., Numerical Methods for Dispersed Multiphase Flows, in Particles in Flows, 2017. Crossref

  6. Santos S. M., Tambourgi E. B., Fernandes F. A. N., Moraes Júnior D., Moraes M. S., Dilute-phase pneumatic conveying of polystyrene particles: pressure drop curve and particle distribution over the pipe cross-section, Brazilian Journal of Chemical Engineering, 28, 1, 2011. Crossref

  7. Sommerfeld M., Stübing S., A novel Lagrangian agglomerate structure model, Powder Technology, 319, 2017. Crossref

  8. Sommerfeld M., Lain S., Stochastic modelling for capturing the behaviour of irregular-shaped non-spherical particles in confined turbulent flows, Powder Technology, 332, 2018. Crossref

  9. Contreras Leidy, Lopez Omar, Lain Santiago, Computational Fluid Dynamics Modelling and Simulation of an Inclined Horizontal Axis Hydrokinetic Turbine, Energies, 11, 11, 2018. Crossref

  10. Laín S., Sommerfeld M., Numerical prediction of particle erosion of pipe bends, Advanced Powder Technology, 30, 2, 2019. Crossref

  11. Laín Santiago, Taborda Manuel, López Omar, Numerical Study of the Effect of Winglets on the Performance of a Straight Blade Darrieus Water Turbine, Energies, 11, 2, 2018. Crossref

  12. Laín S., Contreras L. T., López O., A review on computational fluid dynamics modeling and simulation of horizontal axis hydrokinetic turbines, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41, 9, 2019. Crossref

  13. Jun Li, Ma Chunyuan, Tao Wang, Chang Jingcai, Zhao Xiqiang, Effects of roughness on the performance of axial flow cyclone separators using numerical simulation method, Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 233, 7, 2019. Crossref

  14. Ernst Martin, Sommerfeld Martin, Laín Santiago, Quantification of preferential concentration of colliding particles in a homogeneous isotropic turbulent flow, International Journal of Multiphase Flow, 117, 2019. Crossref

  15. Sommerfeld M., Pasternak L., Advances in modelling of binary droplet collision outcomes in Sprays: A review of available knowledge, International Journal of Multiphase Flow, 117, 2019. Crossref

  16. Laín Santiago, Response Behavior of Nonspherical Particles in Homogeneous Isotropic Turbulent Flows, in Advanced Computational Fluid Dynamics for Emerging Engineering Processes - Eulerian vs. Lagrangian, 2019. Crossref

  17. Li Yuan, Qin Guoliang, Xiong Zhiyi, Ji YunFeng, Fan Ling, The effect of particle humidity on separation efficiency for an axial cyclone separator, Advanced Powder Technology, 30, 4, 2019. Crossref

  18. Laín Santiago, Cortés Pablo, López Omar Darío, Numerical Simulation of the Flow around a Straight Blade Darrieus Water Turbine, Energies, 13, 5, 2020. Crossref

  19. Benavides-Morán Aldo, Cubillos Alfonso, Gómez Alexánder, Spray drying experiments and CFD simulation of guava juice formulation, Drying Technology, 39, 4, 2021. Crossref

  20. Lain S., Sommerfeld M., Influence of droplet collision modelling in Euler/Lagrange calculations of spray evolution, International Journal of Multiphase Flow, 132, 2020. Crossref

  21. Lain Santiago, Ernst Martin, Sommerfeld Martin, Study of Colliding Particle-Pair Velocity Correlation in Homogeneous Isotropic Turbulence, Applied Sciences, 10, 24, 2020. Crossref

  22. Novelletto Ricardo Guilherme Antônio, Sommerfeld Martin, Experimental evaluation of surface roughness variation of ductile materials due to solid particle erosion, Advanced Powder Technology, 31, 9, 2020. Crossref

  23. Yu Jiachuan, Luo Xiaotong, Wang Bo, Wu Songhai, Wang Jingtao, Analysis of Gas–Liquid–Solid Three-Phase Flows in Hydrocyclones Through a Coupled Method of Volume of Fluid and Discrete Element Model, Journal of Fluids Engineering, 143, 11, 2021. Crossref

  24. Duque-Daza Carlos Alberto, Ramirez-Pastran Jesus, Lain Santiago, Influence of Particle Mass Fraction over the Turbulent Behaviour of an Incompressible Particle-Laden Flow, Fluids, 6, 11, 2021. Crossref

  25. Zhang Xinchen, Nathan Graham J., Tian Zhao F., Chin Rey C., The influence of the coefficient of restitution on flow regimes within horizontal particle-laden pipe flows, Physics of Fluids, 33, 12, 2021. Crossref

  26. Castang C., Laín S., García D., Sommerfeld M., Aerodynamic coefficients of irregular non-spherical particles at intermediate Reynolds numbers, Powder Technology, 402, 2022. Crossref

  27. Ahmad Muhammad, Shahzad Aamer, Qadri M. Nafees Mumtaz, An overview of aerodynamic performance analysis of vertical axis wind turbines, Energy & Environment, 2022. Crossref

  28. Zhang Xinchen, Nathan Graham J., Tian Zhao F., Chin Rey C., The dominant mechanisms for each regime of secondary flows in horizontal particle-laden pipe flows, Journal of Fluid Mechanics, 949, 2022. Crossref

Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa Políticas de preços e assinaturas Begell House Contato Language English 中文 Русский Português German French Spain