Inscrição na biblioteca: Guest

ABOUT THE BODY OF REVOLUTION OF MINIMUM DRAG WITH A CYLINDRICAL CENTRAL PORTION

Volume 51, Edição 1, 2020, pp. 29-36
DOI: 10.1615/TsAGISciJ.2020034176
Get accessGet access

RESUMO

The paper presents a methodology for optimizing the shape of the body of revolution at subsonic and supersonic flow velocities. The calculations are based on numerical solutions of the Navier-Stokes equations. A comparison of calculated and experimental data is performed to assess the reliability of the method. It is shown that using the proposed technique can reduce the drag of the body of revolution in comparison with the prototype.

Referências
  1. Von Karman, T., The Problem of Resistance in Compressible Fluids, Reale Accademia d'Italia, Classe della Scienze Fisiche, Matematiche e Naturali, Rome, Italy: Quinto Convegno Volta, pp. 222-276, 1935.

  2. Sears, W.R., On Projectiles of Minimum Drag, Q. Appl. Math., vol. 4, no. 4, pp. 361-366, 1947.

  3. Haack, W., Geschussformen kleinsten Wellenwiederstandes, Lilienthal-Gesellschaft, Bericht no. 139, 1947.

  4. Takovitskii, S.A., Optimization Problems of Supersonic Aerodynamics, Moscow, Russia: Nauka, 2015. (in Russian).

  5. Takovitskii, S.A., Analytical Solution in the Problem of Constructing Axisymmetric Noses with Min-imum Wave Drag, FluidDyn., vol. 41, no. 2, pp. 308-312, 2006.

  6. Yefremov, N.L., Kraiko, A.N., P'yankov, K.S., and Takovitskii, S.A., The Construction of a Nose Shape of Minimum Drag for Specified External Dimensions and Volume Using Euler Equations, J. Appl. Math. Mech., vol. 70, no. 6, pp. 912-923, 2006.

  7. Takovitskii, S.A., Nose Parts with Minimum Wave Drag, Polyot, no. 12, pp. 44-48, 2008.

  8. Ivanuskin, D.S. and Takovitskii, S.A., Nose Parts of Minimal Wave Drag with Front Face and the Power-Law Generatrix, TsAGISci. J, vol. 40, no. 5, pp. 561-569, 2009.

  9. Menter, F., Galpin, P., Esch, T., Kuntz, M., and Berner, C., CFD Simulations of Aerodynamic Flows with a Pressure-Based Method, Paper ICAS 2004-2.4.1, Yokohama, Japan, 2004.

  10. Lorenz-Meyer, W. and Aulehla, F., MBB-Body of Revolution No. 3, AGARD Advisory Report No. 138, pp. C2-1-C2-31, 1979.

  11. Vozhdaev, V.V., Kiselev, A.F., Sboev, D.S., Teperin, L.L., and Chernyshev, S.L., Comparison of Results of Calculation of Laminar-Turbulent Transition Position on a Wing Using Various Turbulence Models, TsAGISci. J, vol. 45, no. 5, pp. 391-403, 2014.

  12. Vozhdaev, V.V., Kiselev, A.F., Sboev, D.S., Teperin, L.L., and Chernyshev, S.L., Modelling of the Laminar-Turbulent Transition on a Swept and Straight Wings with the Use of Numerical Solutions of the Navier-Stokes Equations, TsAGISci. J, vol. 46, no. 4, pp. 309-322, 2015.

  13. Batura, N.I., Vozhdaev, V.V., Gadzhimagomedov, G.G., and Lipatov, I.I., Mixing Layer Structure of a Jet in a Wind Tunnel with an Open Test Section, TsAGISci. J, vol. 48, no. 8, pp. 711-722, 2017.

  14. Menter, F.R., Kuntz, M., and Langtry, R., Ten Years of Industrial Experience with the SST Turbulence Model, in Turbulence, Heat and Mass Transfer, Redding, CT: Begell House, pp. 625-632, 2003.

  15. Langtry, R.B., Menter, F.R., Correlation-Based Transition Modeling for Unstructured Parallelized Computational Fluid Dynamics Codes, AIAA J, vol. 47, no. 12, pp. 2894-2906, 2009.

  16. Vozhdaev, V.V. and Teperin, L.L., Method of Creating the Rational Calculation Grid in the Calculations based on the Navier-Stokes Equations, Polyot, no. 6, pp. 48-54, 2015.

  17. Vozhdaev, V.V. and Teperin, L.L., Approach of Creating Rational Geometric Models and Computational Grids for The Calculations based on the Navier-Stokes Equations, Tekh. Vozdushn. Flota, no. 4, pp. 21-27, 2014.

Última edição

KIRILL IVANOVICH SYPALO−50TH ANNIVERSARY NUMERICAL STUDY OF THE DISTURBANCES GENERATED BY MICROJETS IN A SUPERSONIC FLAT-PLATE BOUNDARY LAYER Andrei Valerievich Novikov, Alexander Vitalyevich Fedorov, Ivan Vladimirovich Egorov, Anton Olegovich Obraz, Nikolay Nikolaevich Semenov ANALYSIS OF THE MOVING DETONATION INTERACTION WITH TURBULENT BOUNDARY LAYERS IN A DUCT ON THE BASIS OF NUMERICAL SIMULATION Vladimir Anatolievich Sabelnikov, Vladimir Viktorovich Vlasenko, Sergey Sergeyevich Molev EXPERIMENTAL STUDY OF COUNTERFLOW BLOWING IN HIGH-SPEED FLOW THROUGH AN ASYMMETRIC SLOT IN THE LEADING EDGE OF A SHARP WEDGE Eduard Borisovich Vasilevskii, Ivan Valeryevich Ezhov, Pavel Vladimirovich Chuvakhov ASYMPTOTIC SOLUTIONS TO HYPERSONIC BOUNDARY LAYER EQUATIONS ON A FLAT WING WITH A POINT OF INFLECTION ON THE LEADING EDGE Georgiy Nikolaevich Dudin, Aleksey Vyacheslavovich Ledovskiy WAVE MODEL OF ORGANIZED STRUCTURES IN A TURBULENT BOUNDARY LAYER ON A PLATE WITH ZERO LONGITUDINAL PRESSURE GRADIENT Vladimir Alekseevich Zharov, Igor Ivanovich Lipatov, Rami Salah Saber Selim NUMERICAL SIMULATION OF THE FLOW AROUND LANDSCAPE FRAGMENTS AND SOLUTION VERIFICATION Viktor Viktorovich Vyshinsky, Koang T'in' Zoan POLYNOMIAL REPRESENTATION OF THERMODYNAMIC PROPERTIES OF COMBINED FUEL SYSTEMS IN RAMJET SIMULATION MODELS Timur Romanovich Zuev, Mikhail Semenovich Tararyshkin A MODEL TEST METHODOLOGY FOR THE INVESTIGATION OF AN ELASTICALLY SCALED MAIN ROTOR Maxim Andreyevich Ledyankin , Sergey Anatolyevich Mikhailov, Dmitry Valeryevich Nedel'ko, Timur Arturovich Agliullin INDEX, VOLUME 51, 2020
Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa Políticas de preços e assinaturas Begell House Contato Language English 中文 Русский Português German French Spain