Inscrição na biblioteca: Guest
Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa
High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes
ESCI SJR: 0.176 SNIP: 0.48 CiteScore™: 1.3

ISSN Imprimir: 1093-3611
ISSN On-line: 1940-4360

High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes

DOI: 10.1615/HighTempMatProc.2019032268
pages 337-344

SYNTHESIS, CRYSTAL STRUCTURE, AND MAGNETIC PROPERTIES OF LANTHANUM-STRONTIUM MANGANITES CONTAINING NICKEL IONS

Nina Tereshko
Scientific-Practical Materials Research Center of NAS of Belarus, 19 P. Brovka Str., Minsk, 220072, Belarus
Maxim Bushinsky
Scientific-Practical Materials Research Center of NAS of Belarus, 19 P. Brovka Str., Minsk, 220072, Belarus
Olga Mantytskaya
Scientific-Practical Materials Research Center of NAS of Belarus, 19 P. Brovka Str., Minsk, 220072, Belarus
Vera Fedotova
Scientific-Practical Materials Research Center of NAS of Belarus, 19 P. Brovka Str., Minsk, 220072, Belarus
Joaquim Manuel Vieira
Department of Materials & Ceramic Engineering & CICECO Institute of Materials, Aveiro University, Portugal
Vitalii A. Bondariev
Department of Electrical Devices and High Voltage Technology, Lublin University of Technology, 38D Nadbystrzycka Str., Lublin, 20–618, Poland

RESUMO

The aim of this work is to understand the properties of manganites doped with nickel ions. The influence of different synthesis conditions on the crystal and magnetic structure as well as magnetic properties of the compositions of the La1-xSrxMn0.65Ni0.35O3 system (0 ≤ x ≤ 0.3) are investigated. It is suggested that antiferromagnetism in the composition with x = 0.3 is associated with strong negative exchange interactions Ni2+−O−Ni2+ and Mn4+−O−Mn4+ and the ions disordering.

Referências

  1. Creel, T.F., Yang, J.B., Kahveci, M., Lamsal, J., Malik, S.K., Quezado, S., Benapfl, B.W., Blackstead, H., Pringle, O.A., Yelon, W.B., and James, W. J., Structural and Magnetic Properties of La0.7Sr0.3Mn1-xNixO3 (x = 0.05, 0.1, 0.2, 0.3, 0.4), Mater. Res. Soc. Symp. Proc, vol. 1327, pp. 7-12, 2011. D0I:10.1557/ opl.2011.852.

  2. Creel, T.F., Yang, J., Kahveci, M., Malik, S.K., Quezado, S., Pringle, O.A., Yelon, W.B., and James, W.J., Structural and Magnetic Properties of La0.7Sr0.3Mnj-xNixO3 (x = 0.4), J. Appl. Phys., vol. 114, no. 1, p. 013911, 2013. D0I:10.1063/1.4810851.

  3. Feng, J.W. and Hwang, L.P., Ferromagnetic Cluster Behaviors and Magnetoresistance in Ni-doped LaSrMnO3 systems, Appl. Phys. Lett, vol. 75, no. 11, pp. 1592-1594, 1999. D0I:10.1063/1.124764.

  4. Goodenough, J.B., Theory of the Role of Covalence in the Perovskite-Type Manganites [La,M(II)]MnO3, Phys. Rev., vol. 100, no. 2, pp. 564-573, 1955. D0I:10.1103/PhysRev.100.564.

  5. Guo, Y., Shi, L., Zhou, S., Zhao, J., and Liu, W., Near Room-Temperature Magnetoresistance Effect in Double Perovskite La2NiMnO6, Appl. Phys. Lett., vol. 102, no. 22, p. 222401, 2013a. D0I:10.1063/1.4808437.

  6. Guo, Y., Shi, L., Zhou, S., Zhao, J., Wang, C., Liu, W., and Wei, S., Tunable Exchange Bias Effect in Sr-Doped Double Perovskite La2NiMnO6, J. Phys. D. Appl. Phys., vol. 46, no. 17, p. 175302, 2013b. D0I:10.1088/0022-3727/46/17/175302.

  7. Joly, J.V.L., Joy, P.A., Date, S.K., and Gopinath, C.S., Two Ferromagnetic Phases with Different Spin States of Mn and Ni in LaMn05Ni05O3, Phys. Rev. B-Condens. Matter Mater. Phys., vol. 65, no. 18, pp. 1-11, 2002. D0I:10.1103/PhysRevB.65.184416.

  8. Roisnel, T. and Rodriguez-Carvajal, J., WinPLOTR: A Windows Tool for Powder Diffraction Pattern Analysis, Mater. Sci. Forum., Trans. Tech. Publications Ltd., vol. 378-381, pp. 118-123, 2001. D0I:10.4028/www. scientific.net/MSF. 378-381.118.

  9. Sen, C., Alvarez, G., and Dagotto, E., Competing Ferromagnetic and Charge-Ordered States in Models for Manganites: The Origin of the Colossal Magnetoresistance Effect, Phys. Rev. Let., vol. 98, no. 12, p. 127202, 2007. D0I:10.1103/PhysRevLett.98.127202.

  10. Toulemonde, O., Studer, F., Barnabe, A., Maignan, A., Martin, C., and Raveau, B., Charge States of Transition Metal in "Cr, Co and Ni" Doped Ln0 5Ca0 5MnO3 CMR Manganites, Eur. Phys. J. B, vol. 4, no. 2, pp. 159-167, 1998. D0I:10.1007/s100510050364.

  11. Toulemonde, O., Studer, F., and Raveau, B., Magnetic Interactions Studies of Co and Ni-doped Manganites using Soft XMCD, Solid State Commun, vol. 118, no. 2, pp. 107-112, 2001. D0I:10.1016/ S0038-1098(01)00020-5.

  12. Troyanchuk, I.O., Bushinsky, M.V., Tereshko, N.V., Sikolenko, V., and Schorr, S., Magnetic Structure and Magnetotransport Properties of La07Sr03Mn1-xNixO3, Phys. Met. Metallogr., vol. 119, no. 4, pp. 316-323, 2018. D0I:10.1134/S0031918X18040166.

  13. Troyanchuk, I.O., Karpinsky, D.V., Bushinsky, M.V., Sirenko, V.A., Sikolenko, V.V., and Franz, A., Antiferromagnet-Ferromagnet Transition in La1LaSxSrxMn0.5Ni0 5O3 (0 < x < 0.2) Ceramics, Low Temp. Phys., vol. 43, no. 8, pp. 982-985, 2017. D0I:10.1063/1.5001300.

  14. Wang, Z.H., Cai, J.W., Shen, B.G., Chen, X., and Zhan, W.S., Exchange Interaction, Spin Cluster and Transport Behavior in Perovskites La0 67Sr0 33(Mn1LaSxNix)O3 (x < 0.2), J. Phys. Condens. Matter., vol. 12, no. 5, pp. 601-610, 2000. D0I:10.1088/0953-8984/12/5/308.

  15. Wold, A., Arnott, R.J., and Goodenough, J.B., Some Magnetic and Crystallographic Properties of the System LaMn1LaSxNixOm, J. Appl. Phys., vol. 29, no. 3, pp. 387-389, 1958. D0I:10.1063/1.1723147.

  16. Wollan, E.O. and Koehler, W.C., Neutron Diffraction Study of the Magnetic Properties of the Series of Perovskite-Type Compounds [(1LaSx)La,xCa]MnO3, Phys. Rev., vol. 100, no. 2, pp. 545-563, 1955. D0I:10.1103/PhysRev. 100.54.

  17. Zener, C., Interaction between the D-Shells in the Transition Metals. II. Ferromagnetic Compounds of Manganese with Perovskite Structure, Phys. Rev., vol. 82, no. 3, pp. 403-405, 1951. D0I:10.1103/ PhysRev.82.403.

  18. Zhou, J.S. and Goodenough, J.B., Paramagnetic Phase in Single-Crystal LaMnO3, Phys. Rev. B-Condens. Matter Mater. Phys., vol. 60, no. 22, pp. R15002-R15004, 1999. D0I:10.1103/PhysRevB.60. R15002.


Articles with similar content:

THERMITE-BASED COMBUSTION SYNTHESIS OF NIOBIUM SILICIDES/Al2O3 COMPOSITES
High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes, Vol.16, 2012, issue 1
Yu-Shan Huang, Chun-Liang Yeh
Niobium - Oxygen interaction in halide melts
Advances in Molten Salts, Vol.0, 1998, issue
E.G. Polyakov, T. V. Stogova, L.P. Polyakova
Preparation of Copper Ferrite by reaction of various precursors with the molten NaN03-KN03 medium
Advances in Molten Salts, Vol.0, 1998, issue
E. Andronescu, I. Jitaru, A. Novac, C. Matei
THE USE OF NANOSORBENTS AND FRACTIONATION TECHNIQUES IN LIFE SUPPORT SYSTEMS
Nanoscience and Technology: An International Journal, Vol.5, 2014, issue 1
N. G. Zakharova, Kamila Kydralieva, V. I. Karandin, A. G. Rozhkov, A. A. Yurishcheva
HYDROTHERMAL SYNTHESIS AND CHARACTERIZATION OF Co0.5Zn0.5Fe2O4 NANOMATERIAL AND EVALUATION OF ITS PHOTOCATALYTIC ACTIVITY UNDER VISIBLE-LIGHT IRRADIATION
Nanoscience and Technology: An International Journal, Vol.6, 2015, issue 3
Muhammad Shahzad Saeed, Adil Raza, Ahmed Azam, Muhammad Ahsan