Inscrição na biblioteca: Guest
Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa
International Journal for Uncertainty Quantification
Fator do impacto: 3.259 FI de cinco anos: 2.547 SJR: 0.417 SNIP: 0.8 CiteScore™: 1.52

ISSN Imprimir: 2152-5080
ISSN On-line: 2152-5099

Open Access

International Journal for Uncertainty Quantification

DOI: 10.1615/Int.J.UncertaintyQuantification.2016013870
pages 19-33

AN EFFICIENT MESH-FREE IMPLICIT FILTER FOR NONLINEAR FILTERING PROBLEMS

Feng Bao
Department of Computational and Applied Mathematics, Oak Ridge National Laboratory, One Bethel Valley Road, P.O. Box 2008, MS-6164, Oak Ridge, Tennessee 37831-6164, USA
Yanzhao Cao
Department of Mathematics and Statistics, Auburn University, Auburn, AL 36849; School of Mathematics, Sun Yat Sun University, China
Clayton G. Webster
Department of Computational and Applied Mathematics, Oak Ridge National Laboratory, One Bethel Valley Road, P.O. Box 2008, MS-6164, Oak Ridge, Tennessee 37831-6164, USA
Guannan Zhang
Department of Computational and Applied Mathematics, Oak Ridge National Laboratory, One Bethel Valley Road, P.O. Box 2008, MS-6164, Oak Ridge, Tennessee 37831-6164, USA

RESUMO

In this paper, we propose a mesh-free approximation method for the implicit filter developed in Bao et al., Commun. Comput. Phys., 16(2):382-402, 2014, which is a novel numerical algorithm for nonlinear filtering problems. The implicit filter approximates conditional distributions in the optimal filter over a deterministic state space grid and is developed from samples of the current state obtained by solving the state equation implicitly. The purpose of the mesh-free approximation is to improve the efficiency of the implicit filter in moderately high-dimensional problems. The construction of the algorithm includes generation of random state space points and a mesh-free interpolation method. Numerical experiments show the effectiveness and efficiency of our algorithm.


Articles with similar content:

AN ENSEMBLE KALMAN FILTER USING THE CONJUGATE GRADIENT SAMPLER
International Journal for Uncertainty Quantification, Vol.3, 2013, issue 4
Heikki Haario, Antti Solonen, Albert Parker, Marylesa Howard, Johnathan M. Bardsley
A MULTI-INDEX MARKOV CHAIN MONTE CARLO METHOD
International Journal for Uncertainty Quantification, Vol.8, 2018, issue 1
Ajay Jasra, Yan Zhou, Kengo Kamatani, Kody J. H. Law
A MULTIMODES MONTE CARLO FINITE ELEMENT METHOD FOR ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS WITH RANDOM COEFFICIENTS
International Journal for Uncertainty Quantification, Vol.6, 2016, issue 5
Xiaobing Feng, Cody Lorton, Junshan Lin
NONLOCAL/COARSE-GRAINING HOMOGENIZATION OF LINEAR ELASTIC MEDIA WITH NON-SEPARATED SCALES USING LEAST-SQUARE POLYNOMIAL FILTERS
International Journal for Multiscale Computational Engineering, Vol.12, 2014, issue 5
Julien Yvonnet, Guy Bonnet
AN ANALYSIS OF PRIOR INFORMATION IN BAYESIAN TOMOGRAPHIC RECONSTRUCTION
First Thermal and Fluids Engineering Summer Conference, Vol.4, 2015, issue
Paul J. Hadwin, Samuel J. Grauer, Kyle J. Daun