Inscrição na biblioteca: Guest
Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa
International Journal for Uncertainty Quantification
Fator do impacto: 3.259 FI de cinco anos: 2.547 SJR: 0.417 SNIP: 0.8 CiteScore™: 1.52

ISSN Imprimir: 2152-5080
ISSN On-line: 2152-5099

Open Access

International Journal for Uncertainty Quantification

DOI: 10.1615/Int.J.UncertaintyQuantification.2016012354
pages 1-17

GLOBAL SENSITIVITY ANALYSIS: AN EFFICIENT NUMERICAL METHOD FOR APPROXIMATING THE TOTAL SENSITIVITY INDEX

Matieyendou Lamboni
University of Guyane, Department DFRST, 2091 route de Baduel, 97346 Cayenne Cedex, French Guiana (present address); 228-UMR Espace-Dev, 275 route de Montabo, 97323 Cayenne Cedex, French Guiana (present address); EC-Joint Research Centre, Institute for Environment and Sustainability, Via Fermi 2749, 21027 Ispra, Italy

RESUMO

Variance-based sensitivity analysis and multivariate sensitivity analysis aim to apportion the variability of model output(s) into input factors and their interactions. Total sensitivity index (TSI) gives for each input its overall contribution, including the effects of its interactions with all the other inputs, in the variability of the model output(s). We investigate a numerical approximation of TSIs mainly based upon quadrature rules and quasi-Monte Carlo. The estimation of a TSI relies on the estimation of a total effect function (TEF), which allows for computing the TSI values by taking its variance. First, the paper derives the specific formula for the computation of the TEF, including the theoretical properties of the approximation, and second, it gives an overview of its application in many situations. Our approach gives the exact estimation of TSIs for a class of exact quadrature rules (especially for polynomial functions) and an interesting approximation for other functions. Numerical tests show the faster convergence rate of our approach and their usefulness in practice.


Articles with similar content:

ADAPTIVE SELECTION OF SAMPLING POINTS FOR UNCERTAINTY QUANTIFICATION
International Journal for Uncertainty Quantification, Vol.7, 2017, issue 4
Casper Rutjes, Enrico Camporeale, Ashutosh Agnihotri
DIMENSIONALITY REDUCTION FOR COMPLEX MODELS VIA BAYESIAN COMPRESSIVE SENSING
International Journal for Uncertainty Quantification, Vol.4, 2014, issue 1
Bert J. Debusschere, Habib N. Najm, Peter Thornton, Cosmin Safta, Khachik Sargsyan, Daniel Ricciuto
POLYNOMIAL-CHAOS-BASED KRIGING
International Journal for Uncertainty Quantification, Vol.5, 2015, issue 2
Joe Wiart, Bruno Sudret, Roland Schobi
A HYBRID GENERALIZED POLYNOMIAL CHAOS METHOD FOR STOCHASTIC DYNAMICAL SYSTEMS
International Journal for Uncertainty Quantification, Vol.4, 2014, issue 1
Michael Schick, Vincent Heuveline
ITERATIVE METHODS FOR SCALABLE UNCERTAINTY QUANTIFICATION IN COMPLEX NETWORKS
International Journal for Uncertainty Quantification, Vol.2, 2012, issue 4
Tuhin Sahai, Amit Surana, Andrzej Banaszuk