Inscrição na biblioteca: Guest
Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa
International Journal for Uncertainty Quantification
Fator do impacto: 3.259 FI de cinco anos: 2.547 SJR: 0.531 SNIP: 0.8 CiteScore™: 1.52

ISSN Imprimir: 2152-5080
ISSN On-line: 2152-5099

Open Access

International Journal for Uncertainty Quantification

DOI: 10.1615/Int.J.UncertaintyQuantification.2014006990
pages 387-421

AN OVERVIEW OF NONINTRUSIVE CHARACTERIZATION, PROPAGATION, AND SENSITIVITY ANALYSIS OF UNCERTAINTIES IN COMPUTATIONAL MECHANICS

Maarten Arnst
University de Liege, Departement d'Aerospatiale et Mecanique, B-4000 Liege, Belgium
Jean-Philippe Ponthot
University de Liege, Departement d'Aerospatiale et Mecanique, B-4000 Liege, Belgium

RESUMO

In this paper, we offer a short overview of a number of methods that have been reported in the computational-mechanics literature for quantifying uncertainties in engineering applications. Within a probabilistic framework, we describe the characterization of uncertainties using mathematical statistics methods, the propagation of uncertainties through computational models using either Monte Carlo sampling or stochastic expansion methods, and the sensitivity analysis of uncertainties using variance- and differentiation-based methods. We restrict our attention to nonintrusive methods that can be implemented as wrappers around existing computer programs, thus requiring no modification of the source code. We include some recent advances in the propagation and sensitivity analysis of uncertainties that are characterized by arbitrary probability distributions that may exhibit statistical dependence. Finally, we demonstrate the methods integrated in the proposed overview through a nonlinear engineering application relevant to metal forming.


Articles with similar content:

THE ROLE OF THE RADIATION DISTRIBUTION FACTOR PDF IN ASSESSING UNCERTAINTY IN THE MONTE CARLO RAY-TRACE METHOD
4th Thermal and Fluids Engineering Conference, Vol.5, 2019, issue
Kory J. Priestley, Mehran Yarahmadi, J. Robert Mahan
PARALLEL ADAPTIVE MULTILEVEL SAMPLING ALGORITHMS FOR THE BAYESIAN ANALYSIS OF MATHEMATICAL MODELS
International Journal for Uncertainty Quantification, Vol.2, 2012, issue 3
Sai Hung Cheung, Ernesto Prudencio
A SIMULATION-BASED UPSCALING TECHNIQUE FOR MULTISCALE MODELING OF ENGINEERING SYSTEMS UNDER UNCERTAINTY
International Journal for Multiscale Computational Engineering, Vol.12, 2014, issue 6
Seung-Kyum Choi, Recep Gorguluarslan
ASSESSING THE PERFORMANCE OF LEJA AND CLENSHAW-CURTIS COLLOCATION FOR COMPUTATIONAL ELECTROMAGNETICS WITH RANDOM INPUT DATA
International Journal for Uncertainty Quantification, Vol.9, 2019, issue 1
Dimitrios Loukrezis, Ulrich Römer, Herbert De Gersem
ITERATIVE METHODS FOR SCALABLE UNCERTAINTY QUANTIFICATION IN COMPLEX NETWORKS
International Journal for Uncertainty Quantification, Vol.2, 2012, issue 4
Tuhin Sahai, Amit Surana, Andrzej Banaszuk