Inscrição na biblioteca: Guest
Critical Reviews™ in Biomedical Engineering

Publicou 6 edições por ano

ISSN Imprimir: 0278-940X

ISSN On-line: 1943-619X

SJR: 0.262 SNIP: 0.372 CiteScore™:: 2.2 H-Index: 56

Indexed in

Magnetic Relaxation of Intracellular Magnetic Nanoparticles for Hyperthermia

Volume 47, Edição 6, 2019, pp. 489-494
DOI: 10.1615/CritRevBiomedEng.2020033016
Get accessGet access

RESUMO

Magnetic nanoparticles have been studied extensively for biomedical applications over the past decades. One of the promising applications of magnetic nanoparticles is hyperthermia, which refers to thermal treatment for cancer. To achieve adequate heat at target sites, it is essential to develop magnetic nanoparticles with high heating efficiency and to optimize external magnetic fields. Here, we discuss the heating mechanism of magnetic nanoparticles, the influence of the intracellular environment on magnetic behavior and heat generation, and recent advances in methods of heating efficiency assessment.

Referências
  1. Franze S, Marengo A, Stella B, Minghetti P, Arpicco S, Cilurzo F. Hyaluronan-decorated liposomes as drug delivery systems for cutaneous administration. Int J Pharm. 2018;535(1-2):333-9. .

  2. Tomitaka A, Arami H, Huang Z, Raymond A, Rodriguez E, Cai Y, Febo M, Takemura Y, Nair M. Hybrid magneto-plasmonic liposomes for multimodal image-guided and brain-targeted HIV treatment. Nanoscale. 2018;10:184-94. .

  3. Koide H, Yoshimatsu K, Hoshino Y, Ariizumi S, Okishima A, Ide T, Egami H, Hamashima Y, Nishimura Y, Kanazawa H, Miura Y, Asai T, Okua N, Shea KJ. Sequestering and inhibiting a vascular endothelial growth factor in vivo by systemic administration of a synthetic polymer nanoparticle. J Control Release. 2019;295:13-20. .

  4. Sun X, Wang G, Zhang H, Hu S, Liu X, Tang J, Shen Y. The blood clearance kinetics and pathway of polymeric micelles in cancer drug delivery. ACS Nano. 2018;12(6):6179-92. .

  5. Kesharwani P, Gothwal A, Iyer AK, Jain K, Chourasia MK, Gupta U. Dendrimer nanohybrid carrier systems: an expanding horizon for targeted drug and gene delivery. Drug Discov Today. 2018;23(2):300-14. .

  6. Tomitaka A, Kaushik A, Kevadiya BD, Mukadam I, Gendelman HE, Khalili K, Liu G, Nair M. Surface-engineered multimodal magnetic nanoparticles to manage CNS diseases. Drug Discov Today. 2019;24(3):873-82. .

  7. Cardoso VF, Francesko A, Ribeiro C, Banobre-Lopez M, Martins P, Lanceros-Mendez S. Advances in magnetic nanoparticles for biomedical applications. Adv Healthc Mater. 2018;7:1700845. .

  8. Tomitaka A, Arami H, Raymond A, Yndart A, Kaushik A, Jayant RD, Takemura Y, Cai Y, Toborek M, Nair M. Development of magneto-plasmonic nanoparticles for multimodal image-guided therapy to the brain. Nanoscale. 2017;9:764-73. .

  9. Huang J, Zhong X, Wang L, Yang L, Mao H. Improving the magnetic resonance imaging contrast and detection methods with engineered magnetic nanoparticles. Theranostics. 2012;2(1):86-102. .

  10. Wang Z, Qiao R, Tang N, Lu Z, Wang H, Zhang Z, Xue X, Huang Z, Zhang S, Zhang G, Li Y. Active targeting theranostic iron oxide nanoparticles for MRI and magnetic resonance-guided focused ultrasound ablation of lung cancer. Biomaterials. 2017;127:25-35. .

  11. Huang Y, Mao K, Zhang B, Zhao Y. Superparamagnetic iron oxide nanoparticles conjugated with folic acid for dual target-specific drug delivery and MRI in cancer theranostics. Mater Sci Eng C. 2017;70:763-71. .

  12. Wang Y-XJ. Superparamagnetic iron oxide based MRI contrast agents: Current status of clinical application. Quant Imaging Med Surg. 2011;1(1):35-40. .

  13. Kaushik A, Jayant RD, Nikkhah-Moshaie R, Bhardwaj V, Roy U, Huang Z, Ruiz A, Yndart A, Atluri V, El-Hage N, Khalili K, Nair M. Magnetically guided central nervous system delivery and toxicity evaluation of magneto-electric nanocarriers. Sci Rep. 2016;6:25309. .

  14. Ni D, Ferreira CA, Barnhart TE, Quach V, Yu B, Jiang D, Wei W, Liu H, Engle JW, Hu P, Cai W. Magnetic Targeting of nanotheranostics enhances Cerenkov radiation-induced photodynamic therapy. J Am Chem Soc. 2018;140(44):14971-9. .

  15. Kami D, Kitani T, Kishida T, Mazda O, Toyoda M, Tomitaka A, Ota S, Ishii R, Takemura Y, Watanabe M, Umezawa A, Gojo S. Pleiotropic functions of magnetic nanoparticles for ex vivo gene transfer. Nanomedicine. 2014;10(6):1165-74. .

  16. Tomitaka A, Ueda K, Yamada T, Takemura Y. Heat dissipation and magnetic properties of surface-coated Fe3O4 nanoparticles for biomedical applications. J Magn Magn Mater. 2012;324(21):3437-42. .

  17. Lanier OL, Korotych OI, Monsalve AG, Wable D, Savliwala S, Grooms NWF, Nacea C, Tuitt OR, Dobson J. Evaluation of magnetic nanoparticles for magnetic fluid hyperthermia. Int J Hyperth. 2019;36(1):687-701. .

  18. Roti JL. Cellular responses to hyperthermia (40-46 C): Cell killing and molecular events. Int J Hyperth. 2008;24(1):3-15. .

  19. Hofer KG. Hyperthermia and cancer. Eur Cells Mater. 2002;3(12):915-7. .

  20. Ohguri T, Yahara K, Moon SD, Yamaguchi S, Imada H, Terashima H, Korogi Y. Deep regional hyperthermia for the whole thoracic region using 8 MHz radiofrequency-capacitive heating device: Relationship between the radiofrequency-output power and the intra-oesophageal temperature and predictive factors for a good heating in 59 patients. Int J Hyperth. 2011;27(1):20-6. .

  21. Gilchrist RK, Medal R, Shorey WD, Hanselman RC, Parrott JC, Taylor CB. Selective inductive heating of lymph nodes. Ann Surg. 1957;146(4):596-606. .

  22. Vallejo-Fernandez G, Whear O, Roca AG, Hussain S, Timmis J, Patel V, O'Grady K. Mechanisms of hyperthermia in magnetic nanoparticles. J Phys D Appl Phys. 2013;46:312001. .

  23. Jeun M, Lee S, Kang JK, Tomitaka A, Wook K, Kim YI, Takemura Y, Chung KW, Kwak J, Bae S. Physical limits of pure superparamagnetic Fe3O4 nanoparticles for a local hyperthermia agent in nanomedicine. Appl Phys Lett. 2012;100:092406. .

  24. Tay ZW, Chandrasekharan P, Chiu-Lam A, Hensley DW, Dhavalikar R, Zhou XY, Yu EY, Goodwill PW, Zheng B, Rinaldi C, Conolly SM. Magnetic particle imaging-guided heating in vivo using gradient fields for arbitrary localization of magnetic hyperthermia therapy. ACS Nano. 2018;12(4):3699-713. .

  25. Du Y, Liu X, Liang Q, Liang XJ, Tian J. Optimization and design of magnetic ferrite nanoparticles with uniform tumor distribution for highly sensitive MRI/MPI performance and improved magnetic hyperthermia therapy. Nano Lett. 2019;19(6):3618-26. .

  26. Thiesen B, Jordan A. Clinical applications of magnetic nanoparticles for hyperthermia. Int J Hyperth. 2008;24(6):467-74. .

  27. Pankhurst QA, Connolly J, Jones SK, Dobson J. Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys. 2003;36(13):167-81. .

  28. Rosensweig REE. Heating magnetic fluid with alternating magnetic field. J Magn Magn Mater. 2002;252:370-4. .

  29. Kallumadil M, Tada M, Nakagawa T, Abe M, Southern P, Pankhurst QA. Suitability of commercial colloids for magnetic hyperthermia. J Magn Magn Mater. 2009;321(10):1509-13. .

  30. Krishnan KM. Biomedical nanomagnetics: A spin through possibilities in imaging, diagnostics, and therapy. IEEE Trans Magn. 2010;46(7):2523-58. .

  31. Wildeboer RR, Southern P, Pankhurst QA. On the reliable measurement of specific absorption rates and intrinsic loss parameters in magnetic hyperthermia materials. J Phys D Appl Phys. 2014;47:495003. .

  32. Wang SY, Huang S, Borca-Tasciuc DA. Potential sources of errors in measuring and evaluating the specific loss power of magnetic nanoparticles in an alternating magnetic field. IEEE Trans Magn. 2013;49(1): 255-62. .

  33. Kobayashi H, Hirukawa A, Tomitaka A, Yamada T, Jeun M, Bae S, Takemura Y. Self-heating property under AC magnetic field and its evaluation by AC/DC hysteresis loops of NiFe2O4 nanoparticles. J Appl Phys. 2010;107:09B322. .

  34. Nacev A, Weinberg IN, Stepanov PY, Kupfer S, Mair LO, Urdaneta MG, Shimoji M, Fricke ST, Shapiro B. Dynamic inversion enables external magnets to concentrate ferromagnetic rods to a central target. Nano Lett. 2015; 15(1):359-64. .

  35. Wang X, Yang R, Yuan C, An Y, Tang Q, Chen D. Preparation of folic acid-targeted temperature-sensitive magneto-liposomes and their antitumor effects in vitro and in vivo. Target Oncol. 2018;13(4):481-94. .

  36. Lee JH, Jang JT, Choi JS, Moon SH, Noh SH, Kim JW, Kim JG, Kim IS, Park KI, Cheon J. Exchange-coupled magnetic nanoparticles for efficient heat induction. Nat Nanotechnol. 2011;6(7):418-22. .

  37. Tomitaka A, Koshi T, Hatsugai S, Yamada T, Takemura Y. Magnetic characterization of surface-coated magnetic nanoparticles for biomedical application. J Magn Magn Mater. 2011;323(10):1398-403. .

  38. Dutz S, Kettering M, Hilger I, Muller R, Zeisberger M. Magnetic multicore nanoparticles for hyperthermia-influence of particle immobilization in tumour tissue on magnetic properties. Nanotechnology. 2011;22:265102. .

  39. Fortin JP, Gazeau F, Wilhelm C. Intracellular heating of living cells through Neel relaxation of magnetic nanoparticles. Eur Biophys J. 2008;37(2):223-8. .

  40. Di Corato R, Espinosa A, Lartigue L, Tharaud M, Chat S, Pellegrino T, Menager C, Gazeau F, Wilhelm C. Magnetic hyperthermia efficiency in the cellular environment for different nanoparticle designs. Biomaterials. 2014;35(24):6400-11. .

  41. Ota S, Yamada T, Takemura Y. Magnetization reversal and specific loss power of magnetic nanoparticles in cellular environment evaluated by AC hysteresis measurement. J Nanomater. 2015;2015:836761. .

  42. Ota S, Yamada T, Takemura Y. Dipole-dipole interaction and its concentration dependence of magnetic fluid evaluated by alternating current hysteresis measurement. J Appl Phys. 2015;117:17D713. .

  43. Mehdaoui B, Tan RP, Meffre A, Carrey J, Lachaize S, Chaudret B, Respaud M. Increase of magnetic hyperthermia efficiency due to dipolar interactions in low-anisotropy magnetic nanoparticles: Theoretical and experimental results. Phys Rev B-Condens Matter Mater Phys. 2013;87(17):1-10. .

  44. Mamiya H, Takeda Y, Naka T, Kawazoe N, Chen G, Jeyadevan B. Practical solution for effective whole-body magnetic fluid hyperthermia treatment. J Nanomater. 2017;2017:1047697. .

  45. Ovejero JG, Cabrera D, Carrey J, Valdivielso T, Salas G, Teran FJ. Effects of inter- and intra-aggregate magnetic dipolar interactions on the magnetic heating efficiency of iron oxide nanoparticles. Phys Chem Chem Phys. 2016;18:10954-63. .

  46. Tan RP, Carrey J, Respaud M. Magnetic hyperthermia properties of nanoparticles inside lysosomes using kinetic Monte Carlo simulations: Influence of key parameters and dipolar interactions, and evidence for strong spatial variation of heating power. Phys Rev B-Condens Matter Mater Phys. 2014;90:214421. .

CITADO POR
  1. Roacho-Pérez Jorge A., Garza-Treviño Elsa N., Delgado-Gonzalez Paulina, G-Buentello Zuca, Delgado-Gallegos Juan Luis, Chapa-Gonzalez Christian, Sánchez-Domínguez Margarita, Sánchez-Domínguez Celia N., Islas Jose Francisco, Target Nanoparticles against Pancreatic Cancer: Fewer Side Effects in Therapy, Life, 11, 11, 2021. Crossref

  2. Sharma Shalini, Zvyagin Andrei, Roy Indrajit, Theranostic Applications of Nanoparticle-Mediated Photoactivated Therapies, Journal of Nanotheranostics, 2, 3, 2021. Crossref

Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa Políticas de preços e assinaturas Begell House Contato Language English 中文 Русский Português German French Spain