Inscrição na biblioteca: Guest
Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa
Critical Reviews™ in Biomedical Engineering
SJR: 0.207 SNIP: 0.376 CiteScore™: 0.79

ISSN Imprimir: 0278-940X
ISSN On-line: 1943-619X

Volume 47, 2019 Volume 46, 2018 Volume 45, 2017 Volume 44, 2016 Volume 43, 2015 Volume 42, 2014 Volume 41, 2013 Volume 40, 2012 Volume 39, 2011 Volume 38, 2010 Volume 37, 2009 Volume 36, 2008 Volume 35, 2007 Volume 34, 2006 Volume 33, 2005 Volume 32, 2004 Volume 31, 2003 Volume 30, 2002 Volume 29, 2001 Volume 28, 2000 Volume 27, 1999 Volume 26, 1998 Volume 25, 1997 Volume 24, 1996 Volume 23, 1995

Critical Reviews™ in Biomedical Engineering

DOI: 10.1615/CritRevBiomedEng.2017024461
pages 459-472

The Virtual Microbiome: Computational Approaches to the Study of Microbe-Host Interactions

Joshua J. Pothen
Department of Medicine, University of Vermont College of Medicine, Burlington, VT 05405
Anne E. Dixon
Department of Medicine, University of Vermont College of Medicine, Burlington, VT 05405
Jason H. T. Bates
Department of Medicine, University of Vermont College of Medicine, Burlington, VT 05405


The GI tract of a normal adult human contains on the order of 1014 foreign living organisms, collectively known as the gut microbiome, the proper maintenance of which is critical for health. Because the gut microbiome is a dynamic system of vast complexity, computational modeling is assuming an increasingly important role in helping us to understand how and why it behaves as it does. In particular, computational models can serve as a rapid, cost-effective means of simulating the microbiome on multiple scales, from that of an individual bacterium to the microbiome as a whole. This not only allows questions to be addressed in ways that are impractical in the experimental laboratory; it also permits competing hypotheses to be interrogated for feasibility before they are subjected to expensive and time-consuming experimental testing. Here we review some of the differential equation–based and agent-based approaches that have been applied to the computational modeling of the gut microbiome and its effects on the rest of the body. The models discussed are helping us understand how the microbiome works as a system, how it maintains its crucial symbiotic relationship with its host, and, in particular, how its malfunctions can lead to a number of important and often serious pathologies.

Articles with similar content:

Modeling of Drug Release from Polymeric Delivery Systems—A Review
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.21, 2004, issue 5
Stephanie T. Lopina, Deenu G. Kanjickal
Sound Bites or Sound Law and Science? Distinguishing "Fertilization" and "Conception" in the Context of Preimplantation IVF Embryos, ESCR, and Personhood
Ethics in Biology, Engineering and Medicine: An International Journal, Vol.3, 2012, issue 4
Celine Anselmina Lefebvre, Susan L. Crockin
Biodegradable Microspheres for Parenteral Delivery
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.22, 2005, issue 6
Vivek Ranjan Sinha, A. Trehan
Factors Determining Airway Caliber in Asthma
Critical Reviews™ in Biomedical Engineering, Vol.41, 2013, issue 6
Brian C. Harvey, Kenneth R. Lutchen
Multiphase Science and Technology, Vol.15, 2003, issue 1-4
A. Prosperetti