Inscrição na biblioteca: Guest
Critical Reviews™ in Biomedical Engineering

Publicou 6 edições por ano

ISSN Imprimir: 0278-940X

ISSN On-line: 1943-619X

SJR: 0.262 SNIP: 0.372 CiteScore™:: 2.2 H-Index: 56

Indexed in

Magnetic Resonance of Brown Adipose Tissue: A Review of Current Techniques

Volume 43, Edição 2-3, 2015, pp. 161-181
DOI: 10.1615/CritRevBiomedEng.2015014377
Get accessGet access

RESUMO

This article reviews recent efforts in magnetic resonance imaging (MRI) and spectroscopy (MRS) of brown adipose tissues (BAT). The article does not differentiate classical BAT from more recently introduced beige/ brite adipocytes, as the unequivocal detection of these hybrid adipocytes with MRI and MRS remains an unmet need and unsolved challenge. BAT studies in both animals and humans have progressed rapidly during the past decade, spanning a broad spectrum of researchers from basic science laboratories to clinical investigators in primary care hospitals. While positron emission and computed tomography (PET/CT) is likely to remain as a reference modality in BAT imaging in the near future, approaches using MRI and MRS have emerged as viable alternatives. The specific signal contrasts that allow an MR system to assess BAT morphology and function are emphasized. Methods that measure tissue fat content, blood flow and perfusion, water diffusion, temperature, and substrate metabolism are explained and pertinent literature reports that utilize these approaches are highlighted. Finally, this article provides an outlook on research opportunities and future directions.

CITADO POR
  1. He Dianning, Mustafi Devkumar, Fan Xiaobing, Fernandez Sully, Markiewicz Erica, Zamora Marta, Mueller Jeffrey, Sachleben Joseph R., Brady Matthew J., Conzen Suzanne D., Karczmar Gregory S., Loor Juan J, Magnetic resonance spectroscopy detects differential lipid composition in mammary glands on low fat, high animal fat versus high fructose diets, PLOS ONE, 13, 1, 2018. Crossref

  2. Baloğlu Fatma Küçük, Severcan Feride, Characterization and Differentiation of Adipose Tissue by Spectroscopic and Spectral Imaging Techniques, in Adipose Tissue, 2018. Crossref

  3. Dev Kapil, Dinish U. S, Chakraborty Smarajit, Bi Renzhe, Andersson-Engels Stefan, Sugii Shigeki, Olivo Malini, Quantitative in vivo detection of adipose tissue browning using diffuse reflectance spectroscopy in near-infrared II window, Journal of Biophotonics, 11, 12, 2018. Crossref

  4. Mermer Meltem, Acar TEK Nilüfer, Adipoz doku ve enerji metabolizması üzerine etkileri, SDÜ Sağlık Bilimleri Dergisi, 2017. Crossref

  5. Coolbaugh Crystal L., Damon Bruce M., Bush Emily C., Welch E. Brian, Towse Theodore F., Cold exposure induces dynamic, heterogeneous alterations in human brown adipose tissue lipid content, Scientific Reports, 9, 1, 2019. Crossref

  6. Franz Daniela, Diefenbach Maximilian N., Treibel Franziska, Weidlich Dominik, Syväri Jan, Ruschke Stefan, Wu Mingming, Holzapfel Christina, Drabsch Theresa, Baum Thomas, Eggers Holger, Rummeny Ernst J., Hauner Hans, Karampinos Dimitrios C., Differentiating supraclavicular from gluteal adipose tissue based on simultaneous PDFF and T2 * mapping using a 20-echo gradient-echo acquisition, Journal of Magnetic Resonance Imaging, 50, 2, 2019. Crossref

  7. Weidlich Dominik, Honecker Julius, Gmach Oliver, Wu Mingming, Burgkart Rainer, Ruschke Stefan, Franz Daniela, Menze Bjoern H., Skurk Thomas, Hauner Hans, Kulozik Ulrich, Karampinos Dimitrios C., Measuring large lipid droplet sizes by probing restricted lipid diffusion effects with diffusion-weighted MRS at 3T, Magnetic Resonance in Medicine, 81, 6, 2019. Crossref

  8. Hartimath S.V., Khanapur S., Boominathan R., Jiang L., Cheng P., Yong F.F., Tan P.W., Robins E.G., Goggi J.L., Imaging adipose tissue browning using the TSPO-18kDa tracer [18F]FEPPA, Molecular Metabolism, 25, 2019. Crossref

  9. Wong Ka Kit, Sedig Laura K., Bloom David A., Hutchinson Raymond J., Shulkin Barry L., 18F-2-fluoro-2-deoxyglucose uptake in white adipose tissue on pediatric oncologic positron emission tomography (PET)/computed tomography (CT), Pediatric Radiology, 50, 4, 2020. Crossref

  10. Weedall Andrew D., Wilson Adrian J., Wayte Sarah C., An investigation into the effect of body mass index on the agreement between whole-body fat mass determined by MRI and air-displacement plethysmography, The British Journal of Radiology, 92, 1103, 2019. Crossref

  11. Abreu-Vieira Gustavo, Sardjoe Mishre Aashley S. D., Burakiewicz Jedrzej, Janssen Laura G. M., Nahon Kimberly J., van der Eijk Jari A., Riem Titia T., Boon Mariëtte R., Dzyubachyk Oleh, Webb Andrew G., Rensen Patrick C. N., Kan Hermien E., Human Brown Adipose Tissue Estimated With Magnetic Resonance Imaging Undergoes Changes in Composition After Cold Exposure: An in vivo MRI Study in Healthy Volunteers, Frontiers in Endocrinology, 10, 2020. Crossref

  12. Wu Mingming, Junker Daniela, Branca Rosa Tamara, Karampinos Dimitrios C., Magnetic Resonance Imaging Techniques for Brown Adipose Tissue Detection, Frontiers in Endocrinology, 11, 2020. Crossref

  13. Sugii Shigeki, Velan S. Sendhil, Physical and Physiological Properties of Fat, in Quantitative Magnetic Resonance Imaging, 1, 2020. Crossref

  14. Ong Frank J., Ahmed Basma A., Oreskovich Stephan M., Blondin Denis P., Haq Tahniyah, Konyer Norman B., Noseworthy Michael D., Haman Francois, Carpentier Andre C., Morrison Katherine M., Steinberg Gregory R., Recent advances in the detection of brown adipose tissue in adult humans: a review, Clinical Science, 132, 10, 2018. Crossref

  15. Santhanam Prasanna, Rowe Steven P., Solnes Lilja B., Quainoo Brittany, Ahima Rexford S., A systematic review of imaging studies of human brown adipose tissue, Annals of the New York Academy of Sciences, 1495, 1, 2021. Crossref

  16. Ren Guang, Hwang Patrick Tae Joon, Millican Reid, Shin Juhee, Brott Brigitta C., van Groen Thomas, Powell Craig M., Bhatnagar Sushant, Young Martin E., Jun Ho-Wook, Kim Jeong-a, Subcutaneous Administration of a Nitric Oxide-Releasing Nanomatrix Gel Ameliorates Obesity and Insulin Resistance in High-Fat Diet-Induced Obese Mice, ACS Applied Materials & Interfaces, 14, 17, 2022. Crossref

  17. Junker Daniela, Syväri Jan, Weidlich Dominik, Holzapfel Christina, Drabsch Theresa, Waschulzik Birgit, Rummeny Ernst J., Hauner Hans, Karampinos Dimitrios C., Investigation of the Relationship between MR-Based Supraclavicular Fat Fraction and Thyroid Hormones, Obesity Facts, 13, 3, 2020. Crossref

  18. Lin Liangjie, Zhang Qinhe, Wang Nan, Jiang Ke, Lin Yanqin, Chen Zhong, Song Qingwei, Liu Ailian, Wang Jiazheng, Evaluation of brown adipose tissue with intermolecular double‐quantum coherence magnetic resonance spectroscopy at 3.0 T, NMR in Biomedicine, 35, 6, 2022. Crossref

  19. Karampinos Dimitrios C., Weidlich Dominik, Wu Mingming, Hu Houchun H., Franz Daniela, Techniques and Applications of Magnetic Resonance Imaging for Studying Brown Adipose Tissue Morphometry and Function, in Brown Adipose Tissue, 251, 2018. Crossref

  20. Yu Qian, Huang Shan, Xu Ting‐Ting, Wang Yuan‐Cheng, Ju Shenghong, Measuring Brown Fat Using MRI and Implications in the Metabolic Syndrome , Journal of Magnetic Resonance Imaging, 54, 5, 2021. Crossref

Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa Políticas de preços e assinaturas Begell House Contato Language English 中文 Русский Português German French Spain