Inscrição na biblioteca: Guest
Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa
Critical Reviews™ in Biomedical Engineering
SJR: 0.207 SNIP: 0.376 CiteScore™: 0.79

ISSN Imprimir: 0278-940X
ISSN On-line: 1943-619X

Volumes:
Volume 47, 2019 Volume 46, 2018 Volume 45, 2017 Volume 44, 2016 Volume 43, 2015 Volume 42, 2014 Volume 41, 2013 Volume 40, 2012 Volume 39, 2011 Volume 38, 2010 Volume 37, 2009 Volume 36, 2008 Volume 35, 2007 Volume 34, 2006 Volume 33, 2005 Volume 32, 2004 Volume 31, 2003 Volume 30, 2002 Volume 29, 2001 Volume 28, 2000 Volume 27, 1999 Volume 26, 1998 Volume 25, 1997 Volume 24, 1996 Volume 23, 1995

Critical Reviews™ in Biomedical Engineering

DOI: 10.1615/CritRevBiomedEng.2013007887
pages 161-181

Design, Control, and Sensory Feedback of Externally Powered Hand Prostheses: A Literature Review

Aimee Cloutier
Human-Centric Design Research Laboratory, Department of Mechanical Engineering, Texas Tech University, Lubbock, Texas
James Yang
Human-Centric Design Research Laboratory, Department of Mechanical Engineering, Texas Tech University, Lubbock, TX 79409, USA

RESUMO

In recent years, there has been a steep rise in the quality of prostheses for patients with upper limb amputations. Researchers have begun to identify methods of making prosthetic hands both functional and cosmetically appealing, in contrast to past designs. Many improvements have occurred because of novel design strategies, such as the use of underactuated mechanisms, which allow for more degrees of freedom (DOF) or help reduce the weight of the prosthesis. The increase in functionality is also due in large part to advancements in control strategies for prosthetic hands. One common control method, using electromyographic (EMG) signals generated by muscle contractions, has allowed for an increase in the DOF of hand designs and a larger number of available grip patterns with little added complexity for the wearer. Another recent improvement in prosthetic hand design instead employs electroneurographic (ENG) signals, requiring an interface directly with the peripheral nervous system (PNS) or the central nervous system (CNS). Despite the recent progress in design and control strategies, however, prosthetic hands are still far more limited than the actual human hand. This review outlines the recent progress in the development of electrode-based prosthetic hands, detailing advancements in the areas of design, sensory feedback, and control through EMG and ENG signals (with a particular focus on interfaces with the PNS). The potential benefits and limitations of both control strategies, in terms of signal classification, invasiveness, and sensory feedback, are discussed. Finally, a brief overview of interfaces with the CNS is provided, and potential future developments for prosthetic hand design are discussed.


Articles with similar content:

Microstimulation: Principles, Techniques, and Approaches to Somatosensory Neuroprosthesis
Critical Reviews™ in Biomedical Engineering, Vol.43, 2015, issue 1
Mulugeta Semework
Methods for Assessing Adequacy of Anesthesia
Critical Reviews™ in Biomedical Engineering, Vol.30, 2002, issue 1-3
Mark van Gils, Arvi Yli-Hankala, Ilkka Korhonen
Neuromuscular Stimulation for Motor Neuroprosthesis in Hemiplegia
Critical Reviews™ in Physical and Rehabilitation Medicine, Vol.12, 2000, issue 1
Ronald Triolo, Kevin Kilgore, John Chae, David Yu
Control of Multifunctional Prosthetic Hands by Processing the Electromyographic Signal
Critical Reviews™ in Biomedical Engineering, Vol.30, 2002, issue 4-6
P. Dario, Silvestro Micera, M. Zecca, M. C. Carrozza
Procedures for Evaluating the Adequacy of Anesthesia
Critical Reviews™ in Biomedical Engineering, Vol.45, 2017, issue 1-6
Mark van Gils, Arvi Yli-Hankala, Ilkka Korhonen