Inscrição na biblioteca: Guest
Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa
Heat Transfer Research
Fator do impacto: 0.404 FI de cinco anos: 0.8 SJR: 0.264 SNIP: 0.504 CiteScore™: 0.88

ISSN Imprimir: 1064-2285
ISSN On-line: 2162-6561

Volumes:
Volume 50, 2019 Volume 49, 2018 Volume 48, 2017 Volume 47, 2016 Volume 46, 2015 Volume 45, 2014 Volume 44, 2013 Volume 43, 2012 Volume 42, 2011 Volume 41, 2010 Volume 40, 2009 Volume 39, 2008 Volume 38, 2007 Volume 37, 2006 Volume 36, 2005 Volume 35, 2004 Volume 34, 2003 Volume 33, 2002 Volume 32, 2001 Volume 31, 2000 Volume 30, 1999 Volume 29, 1998 Volume 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.2019027922
pages 1457-1476

BOILING HEAT TRANSFER PERFORMANCE OF A BRASS BEADS-PACKED POROUS LAYER SUBJECTED TO SUBMERGED JET IMPINGEMENT

Yunsong Zhang
Merchant Marine College, Shanghai Maritime University, Shanghai, 201306, P.R. China
Wei Chen
Merchant Marine College, Shanghai Maritime University, Shanghai 201306, China

RESUMO

Submerged impingement boiling has been extensively applied in industrial cooling owing to its high heat transfer coefficient (HTC). A particles-packed porous layer with enlarged heat transfer area and special internal porous structure can improve the fluid disturbance and produce adequate bubble nucleation sites. An experimental investigation on submerged jet impinging boiling of a brass beads-packed porous layer was conducted. The effects of jet flow rate, fluid inlet subcooling, beads diameter, layer number as well as various double layer combination models on heat transfer performance were analyzed. The impact on the onset of nucleate boiling (ONB) and critical heat flux (CHF) was also explored. The results show that better cooling property can be obtained for a higher jet flow rate, a higher fluid inlet subcooling, and a smaller single layer bead diameter, while the optimal layer number and double layer combination model exist for best heat transfer. Besides, a high-speed camera was utilized to capture the actual scene of submerged jet impingement boiling for visualization study of the dynamics evolution of vapor bubbles which would be highly linked to the heat transfer process.

Referências

  1. Antwerpen, V.W., Toit, C.G.D., and Rousseau, P.G., A Review of Correlations to Model the Packing Structure and Effective Thermal Conductivity in Packed Beds of Mono-Sized Spherical Particles, J. Nuclear Eng. Design, vol. 240, no. 7, pp. 1803-1818, 2010.

  2. Ebrahimi Dehshali, M., Seyyed, Z.N.B., and Hakkaki-Fard, A., Pool Boiling Heat Transfer Enhancement by Twisted-Tape Fins, J. Appl. Therm. Eng., S1359431117367601, 2018.

  3. Felipe, T.D. and Lemos, M.J.S.D., Simulation of Laminar Impinging Jet on a Porous Medium with a Thermal Non-Equilibrium Model, Int. J. Heat Mass Transf., vol. 53, nos. 23-24, pp. 5089-5101, 2010.

  4. Graminho, D.R. and Lemos, M.J.S.D., Simulation of Turbulent Impinging Jet into a Cylindrical Chamber with and without a Porous Layer at the Bottom, Int. J. Heat Mass Transf., vol. 52, nos. 3-4, pp. 680-693, 2009.

  5. Guo, D., Wei, J., and Zhang, Y., Enhanced Flow Boiling Heat Transfer with Jet Impingement on Micro-Pin-Finned Surfaces, J. Appl. Therm. Eng., vol. 31, nos. 11-12, pp. 2042-2051, 2011.

  6. Jeng, T.M., Tzeng, S.C., and Huang, Q.Y., Heat Transfer Performance of the Pin-Fin Heat Sink Filled with Packed Brass Beads under a Vertical Oncoming Flow, Int. J. Heat Mass Transf., vol. 86, pp. 531-541, 2015.

  7. Jenkins, R., Lupoi, R., Kempers, R., and Robinson, A., Heat Transfer Performance of Boiling Jet Array Impingement on Micro-Grooved Surfaces, J. Exp. Therm. Fluid Sci., vol. 80, pp. 293-304, 2017.

  8. Ji, X., Xu, J., and Zhao, Z., Pool Boiling Heat Transfer on Uniform and Non-Uniform Porous Coating Surfaces, J. Exp. Therm. Fluid Sci., vol. 48, no. 7, pp. 198-212, 2013.

  9. Lin, F.C., Liu, B.H., Huang, C.T., and Chen, Y.M., Evaporative Heat Transfer Model of a Loop Heat Pipe with Bidisperse Wick Structure, Int. J. Heat Mass Transf., vol. 54, no. 21, pp. 4621-4629, 2011.

  10. Qiu, L., Dubey, S., and Choo, F.H., Effect of Conjugation on Jet Impingement Boiling Heat Transfer, Int. J. Heat Mass Transf., vol. 91, pp. 584-593, 2015a.

  11. Qiu, L., Dubey, S., Choo, F.H., and Duan, F., Recent Developments of Jet Impingement Nucleate Boiling, Int. J. Heat Mass Transf., vol. 89, pp. 42-58, 2015b.

  12. Rahman, M.M., Olferoglu, E., and Mccarthy, M., Role of Wickability on the Critical Heat Flux of Structured Superhydrophilic Surfaces, J. Langmuir ACS J. Surfaces Colloids, vol. 30, no. 37, p. 11225, 2014.

  13. Semenic, T. and Catton, I., Experimental Study of Biporous Wicks for High Heat Flux Applications, Int. J. Heat Mass Transf., vol. 52, no. 21, pp. 5113-5121, 2012.

  14. Setoodeh, H., Keshavarz, A., Ghasemian, A., and Nasouhi, A., Subcooled Flow Boiling of Alumina/Water Nanofluid in a Channel with a Hot Spot: An Experimental Study, J. Appl. Therm. Eng., vol. 90, pp. 384-394, 2015.

  15. Setoodeh, H., Keshavarz, A., Ghasemian, A., and Nasouhi, A., Subcooled Flow Boiling of Ethylene-Glycol/Water Mixture in an Inclined Channel with a Hot Spot: An Experimental Study, Int. Commun. Heat Mass Transf., vol. 78, pp. 285-294, 2016.

  16. Sur, A., Lu, Y., Pascente, C., Ruchhoeft, P., and Liu, D., Pool Boiling Heat Transfer Enhancement with Electrowetting, Int. J. Heat Mass Transf., vol. 120, pp. 202-217, 2018.

  17. Thiagarajan, S.J., Yang, R., King, C., and Narumanchi, S., Bubble Dynamics and Nucleate Pool Boiling Heat Transfer on Microporous Copper Surfaces, Int. J. Heat Mass Transf., vol. 89, pp. 1297-1315, 2015.

  18. Toit, C.G.D., Radial Variation in Porosity in Annular Packed Beds, J. Nuclear Eng. Design, vol. 238, no. 11, pp. 3073-3079, 2008.

  19. Wang, L., Khan, A.R., Erkan, N., Gong, H., and Okamoto, K., Critical Heat Flux Enhancement on a Downward Face Using Porous Honeycomb Plate in Saturated Flow Boiling, Int. J. Heat Mass Transf., vol. 109, pp. 454-461, 2017.

  20. Wang, W., Wu, F., Yu, Q., and Jin, H., Experimental Investigation of Titanium Tetrachloride in Pool Boiling Heat Transfer, Int. J. Heat Mass Transf., vol. 122, pp. 1308-1312, 2018.

  21. Wang, X., Liu, Z., and Li, Y., Experimental Study of Heat Transfer Characteristics of High-Velocity Small Slot Jet Impingement Boiling on Nanoscale Modification Surfaces, Int. J. Heat Mass Transf., vol. 103, pp. 1042-1052, 2016.

  22. Wang, Z., Peng, X.F., and Ochterbeck, J.M., Dynamic Bubble Behavior during Boiling in Bead-Packed Structures, Int. J. Heat Mass Transf., vol. 47, no. 22, pp. 4771-4783, 2004.

  23. Wolf, D.H., Incropera, F.P., and Viskanta, R., Jet Impingement Boiling, J. Adv. Heat Transf., vol. 23, pp. 1-132, 1993.

  24. Yakkatelli, R., Wu, Q., and Fleischer, A.S., A Visualization Study of the flow Dynamics of a Single Round Jet Impinging on Porous Media, J. Exp. Therm. Fluid Sci., vol. 34, pp. 1008-1015, 2010.

  25. Zhao, T., Coupled Heat and Mass Transfer of a Stagnation Point Flow in a Heated Porous Bed with Liquid Film Evaporation, Int. J. Heat Mass Transf., vol. 42, no. 5, pp. 861-872, 1999.

  26. Zhao, Z., Peles, Y., and Jensen, M.K., Water Jet Impingement Boiling from Structured-Porous Surfaces, Int. J. Heat Mass Transf., vol. 63, no. 15, pp. 445-453, 2013.

  27. Zhou, L., Wang, Z., and Du, X., Boiling Characteristics of Water and Self-Rewetting Fluids in Packed Bed of Spherical Glass Beads, J. Exp. Therm. Fluid Sci., vol. 68, pp. 537-544, 2015.

  28. Zupancic, M., Moze, M., and Gregorcic, P., Nanosecond Laser Texturing of Uniformly and Non-Uniformly Wettable Micro Structured Metal Surfaces for Enhanced Boiling Heat Transfer, J. Appl. Surface Sci., vol. 399, p. 480, 2016.

  29. Zupancic, M., Steinbucher, M., and Gregorcic, P., Enhanced Pool-Boiling Heat Transfer on Laser-Made Hydrophobic/Superhy-drophilic Polydimethylsiloxane-Silica Patterned Surfaces, J. Appl. Therm. Eng., vol. 91, pp. 288-297, 2015.


Articles with similar content:

THE ENHANCEMENT EFFECTS OF A PLUME OF RISING BUBBLES ON NATURAL CONVECTION FROM A HEATED VERTICAL PLATE
Journal of Enhanced Heat Transfer, Vol.19, 2012, issue 4
Brian Donnelly, David Donoghue, Darina B. Murray
HEAT TRANSFER ANALYSIS OF AN IMPINGING SLOT JET ON A CONCAVE SURFACE
4th Thermal and Fluids Engineering Conference, Vol.5, 2019, issue
Gilles C. Roy, A. Babineau, Gérard J. Poitras, L.-E. Brizzi
Enhancing FC-72 Flow Boiling Heat Transfer Through Bubble Pumping from Imbalance Shear Flow Driven Rotating Beads
International Heat Transfer Conference 15, Vol.16, 2014, issue
Tsing Fa Lin, Shu-Lei Wang
BUBBLE BEHAVIOR AND BUBBLE GROWTH MODEL OF HIGHLY SUBCOOLED FLOW BOILING IN A VERTICAL RECTANGULAR CHANNEL
Heat Transfer Research, Vol.49, 2018, issue 12
Dewen Yuan, Jianjun Xu, Yunke Zhong, Yanping Huang, Deqi Chen, Xiao Yan
Enhancement of Heat Transfer with Inclined Baffles and Ribs Combined
Journal of Enhanced Heat Transfer, Vol.9, 2002, issue 3&4
Jason Hinton, Jamil A. Khan, Sarah C. Baxter