Inscrição na biblioteca: Guest
Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa
Heat Transfer Research
Fator do impacto: 0.404 FI de cinco anos: 0.8 SJR: 0.264 SNIP: 0.504 CiteScore™: 0.88

ISSN Imprimir: 1064-2285
ISSN On-line: 2162-6561

Volumes:
Volume 50, 2019 Volume 49, 2018 Volume 48, 2017 Volume 47, 2016 Volume 46, 2015 Volume 45, 2014 Volume 44, 2013 Volume 43, 2012 Volume 42, 2011 Volume 41, 2010 Volume 40, 2009 Volume 39, 2008 Volume 38, 2007 Volume 37, 2006 Volume 36, 2005 Volume 35, 2004 Volume 34, 2003 Volume 33, 2002 Volume 32, 2001 Volume 31, 2000 Volume 30, 1999 Volume 29, 1998 Volume 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.v32.i1-3.70
8 pages

Experimental and Theoretical Investigation of the Process of Initiation of Vapor Explosion on a Solid Semispherical Model. Part 2. Experiment

Vasilii V. Glazkov
Moscow Power Engineering Institute (Technical University), Russia
Vyacheslav G. Zhilin
Incorporated Institute of High Temperatures (IIHI) of the Russian Academy of Science, 13/19 Igorskaya str., Moscow, Russia
Yurii P. Ivochkin
Moscow Power Engineering Institute; and Joint Institute for High Temperatures of the Russian Academy of Sciences, Moscow, Russia
V. S. Igumnov
Institute for High Temperatures, Russian Academy of Sciences, Moscow, Russia
Oleg A. Sinkevich
Science Technological Center of Associated Institute for High Temperature, Russian Academy of Science and Moscow Power Engineering Institute (Technical University), Russia
Vladimir R. Tsoi
Elektrogorsk Research and Engineering Center on Nuclear Plants Safely (ENIT's),Bezymyannaya ul., 6, Elektrogorsk, Moscowoblas t, 142530, Russia
V. G. Shvets
Elektrogorsk Scientific-Research Center, Elektrogorsk, Russia

RESUMO

On the basis of the analysis of the experimental data, a physical model of the initiation of a vapor explosion has been developed. The following stages of the process of an explosion-like transition from a film to a bubble boiling on a semi-spherical model immersed in water are calculated: the incipience of the Kelvin-Helmholtz instability of a vapor film; growth of the instability amplitude and the collision of the crests of liquid waves with a surface; extension of the region of collisions due to the propagation of capillary waves generated in recoil; the cooling of the model of the temperature below the critical one and collapse of the vapor film; superheating of the surface layer of liquid that came in contact with the model and the expansion of the formed vapor layer resulting in the generation of a descending liquid jet. The estimates obtained demonstrate the qualitative and quantitative agreement with experimental results.


Articles with similar content:

EVALUATION OF CONVECTIVE FILM BOILING MODELS WITH NONEQUILIBRIUM DATA IN TUBES
International Heat Transfer Conference 8, Vol.5, 1986, issue
Stephen W. Webb, John C. Chen
The Crisis of Boiling of Binary Mixtures of Liquids in Free Convection
Heat Transfer Research, Vol.32, 2001, issue 4-6
Victor V. Yagov, A. V. Sukach
THE BEHAVIOR OF WETTED AREA AND CONTACT ANGLE RIGHT AFTER LIQUID-WALL CONTACT IN SATURATED AND SUBCOOLED POOL BOILING
International Heat Transfer Conference 13, Vol.0, 2006, issue
Yasuo Koizumi, Hiroyasu Ohtake
Water Boiling on Highly Superheated Hemispherical Samples
International Heat Transfer Conference 12, Vol.38, 2002, issue
Yuri Albertovich Zeigarnik, Vyacheslav G. Zhilin, Yurii P. Ivochkin, Vladimir R. Tsoi, Oleg A. Sinkevich, Vasilii V. Glazkov
FLOW PATTERN AND INSTABILITIES IN VOLATILE SESSILE DROPLETS UNDER EVAPORATION
International Heat Transfer Conference 16, Vol.6, 2018, issue
Marc Medale, David Brutin, Sergey Semenov, Florian Carle