Inscrição na biblioteca: Guest
Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa
Heat Transfer Research
Fator do impacto: 0.404 FI de cinco anos: 0.8 SJR: 0.264 SNIP: 0.504 CiteScore™: 0.88

ISSN Imprimir: 1064-2285
ISSN On-line: 2162-6561

Volumes:
Volume 50, 2019 Volume 49, 2018 Volume 48, 2017 Volume 47, 2016 Volume 46, 2015 Volume 45, 2014 Volume 44, 2013 Volume 43, 2012 Volume 42, 2011 Volume 41, 2010 Volume 40, 2009 Volume 39, 2008 Volume 38, 2007 Volume 37, 2006 Volume 36, 2005 Volume 35, 2004 Volume 34, 2003 Volume 33, 2002 Volume 32, 2001 Volume 31, 2000 Volume 30, 1999 Volume 29, 1998 Volume 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.2012006187
pages 245-272

BIOPRESERVATION: HEAT/MASS TRANSFER CHALLENGES AND BIOCHEMICAL/GENETIC ADAPTATIONS IN BIOLOGICAL SYSTEMS

Ram V. Devireddy
Department of Mechanical Engineering, Louisiana State University, Baton Rouge, LA 70803

RESUMO

Biopreservation is the science of extending the shelf life (storage time) of biological systems. The scientific field of biopreservation can be broadly classified into three distinct but interrelated research areas: Cryopreservation (storage by freezing), Desiccation (storage by drying) and Freeze‐Drying (storage by first freezing and then sublimating the frozen water). Although, both freeze‐drying and desiccation create products that are easier to store and transport, they have not, as yet, been successfully applied to store a variety of biological specimens. However, both these technologies have been quite successfully applied in a variety of fields including pharmaceutical sciences and food industry, as demonstrated by the easy availability of shelf‐stable drugs and instant mashed potatoes! On the other hand, freezing storage has a long and storied history of being used to transport biological specimens, over long distances, as far back as the time of the Pharaohs. However, the lack of portable refrigeration/freezing techniques (and the inviolate second law) limited the use of cryopreservation in every‐day life, until the early 19th century. This short review will outline some of the challenges and opportunities in the fields of engineering, heat and mass transfer, biochemical and genetic adaptations in the preservation of biological systems.


Articles with similar content:

PROVIDING EFFECTIVE TEACHING LABORATORIES AT AN OPEN UNIVERSITY
International Journal on Innovations in Online Education, Vol.1, 2017, issue 4
Dietmar Kennepohl
Nanotechnology in Biology: Understanding Future Ethical Dilemmas from Past Technologies
Ethics in Biology, Engineering and Medicine: An International Journal, Vol.1, 2010, issue 4
Juliana Marchesano, Sara Brenner
The Role of Surface Functionalization in the Design of PLGA Micro- and Nanoparticles
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.27, 2010, issue 1
Michael Wirth, Vera Kerleta, Christian Fillafer, Franz Gabor, Gerda Ratzinger
Multi-Scale Interfacial Phenomena and Heat Transfer Enhancement
International Heat Transfer Conference 15, Vol.1, 2014, issue
Antonio L. N. Moreira
Recent Advances in Self-Emulsifying Drug Delivery Systems (SEDDS)
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.31, 2014, issue 2
Premjeet Singh Sandhu, Ravinder Kaur, Sarwar Beg, Bhupinder Singh, Om Parkash Katare, Rajneet Kaur Khurana