Inscrição na biblioteca: Guest
Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa
Heat Transfer Research
Fator do impacto: 0.404 FI de cinco anos: 0.8 SJR: 0.264 SNIP: 0.504 CiteScore™: 0.88

ISSN Imprimir: 1064-2285
ISSN On-line: 2162-6561

Volumes:
Volume 50, 2019 Volume 49, 2018 Volume 48, 2017 Volume 47, 2016 Volume 46, 2015 Volume 45, 2014 Volume 44, 2013 Volume 43, 2012 Volume 42, 2011 Volume 41, 2010 Volume 40, 2009 Volume 39, 2008 Volume 38, 2007 Volume 37, 2006 Volume 36, 2005 Volume 35, 2004 Volume 34, 2003 Volume 33, 2002 Volume 32, 2001 Volume 31, 2000 Volume 30, 1999 Volume 29, 1998 Volume 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.2016005181
pages 291-307

APPLICATION OF A NOVEL LATTICE BOLTZMANN METHOD FOR NUMERICAL SIMULATION OF THREE-DIMENSIONAL TURBULENT NATURAL CONVECTION FLOWS

Ahmad Reza Rahmati
Department of Mechanical Engineering, University of Kashan, Kashan, Iran
Mahmud Ashrafizaadeh
Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, Iran
Ebrahim Shirani
Foolad Institute of Technology, Fooladshahr, Isfahan, 8491663763, Iran

RESUMO

In the present study, for the first time, LES of the D3Q19 Fractional Volumetric Multi-Relaxation-Time Lattice Boltzmann (FV-MRT-LB) model in conjunction with both Smagorinsky and mixed scale viscosity subgrid closure models is applied to a three-dimensional turbulent natural convection flow in a side-heated cubic cavity at different Rayleigh numbers up to 1012 for a Prantdl number of 0.71. The results show that the (Hybrid Thermal) HT-FV-MRT-LB LES method produce reasonably accurate results at low Rayleigh numbers and stable results at high Rayleigh numbers.

Referências

  1. Bejan, A., Convection Heat Transfer, New York: Wiley, 1984.

  2. Chen, S. and Doolen, G., Lattice Boltzmann method for fluid flows, Annu. Rev. Fluid Mech., vol. 30, pp. 329–364, 1998.

  3. Eggels, J. G. M., Direct and large-eddy simulation of turbulent flow using the lattice-Boltzmann scheme, Int. J. Heat Fluid Flow, vol. 17, no. 3, pp. 307–323, 1996.

  4. Frost, W. and Moulden, T. H., Handbook of Turbulence, Vol. 1, Fundamentals and Applications, New York: Plenum Press, 1977.

  5. Ghia, U., Ghia, K. N., and Shin, C., High Reynolds solutions for incompressible flow using the Navier–Stokes equations and High Reynolds solutions for incompressible flow using the Navier–Stokes equations and a multi-grid meth a multi-grid method, J. Comput. Phys., vol. 45, pp. 387–411, 1982.

  6. He, X., Chen, S., and Doolen, G. D., A novel thermal model for the lattice Boltzmann method in incompressible limit, J. Comput. Phys., vol. 146, pp. 282–300, 1998.

  7. Krafczyk, M., Tölke, J., and Luo, L. S., Large-eddy simulations with a multiple-relaxation-time LBE model, Int. J. Mod. Phys. B, vol. 17, nos. 1–2, pp. 33–39, 2003.

  8. Lallemand, P. and Luo, L. S., Theory of the lattice Boltzmann method: Acoustic and thermal properties in two and three dimensions, Physi. Rev. E, vol. 68, pp. 036706(1)–036706(25), 2003.

  9. Pan, C., Luo, L. S., and Miller, C.,T. , An evaluation of lattice Boltzmann schemes for porous medium flow simulation, Computers & Fluids, vol. 35, pp.898–909, 2006.

  10. Rahmati, A. R. and Ashrafizaadeh, M., A generalized lattice Boltzmann method for three-dimensional incompressible fluid flow simulation, J. Appl. Fluid Mech., vol. 2, pp. 71–96, 2009.

  11. Rahmati, A. R. and Ashrafizaadeh, M., A new lattice Boltzmann method for simulation of three-dimensional turbulent natural convection flows, Proc. 19th Annual Int. Conf. on Mechanical Engineering, Birjand, Iran, May, 2011.

  12. Rahmati, A. R. and Ashrafizaadeh, M., Performance evaluation of multi relaxation time lattice Boltzmann method for 3D fluid flow simulation, Proc. 15th Annual Int. Conf. on Mechanical Engineering, Tehran, Iran, pp. 173–174, May, 2007.

  13. Rahmati, A. R. and Ashrafizaadeh, M. , Stability Improvement of Lattice Boltzmann Method for Simulation of High Rayleigh Turbulent Thermal Flows, PhD thesis, Isfahan University of Technology, Isfahan, Iran, 2010.

  14. Rahmati, A. R. and Niazi, S., A multi relaxation time lattice Boltzmann method for simulation of flow in micro devices, Proc. 19th Annual Int. Conf. on Mechanical Engineering, Birjand, Iran, May, 2011a.

  15. Rahmati, A. R. and Niazi, S. , Application of a lattice Boltzmann method on non-uniform meshes for simulation of micro flow, Proc. 10th Iranian Aerospace Society Conf., Tehran, Iran, March,2011b.

  16. Rahmati, A. R. and Niazi, S., Application of entropic lattice Boltzmann method for simulation of micro flows, Proc. 10th Iranian Aerospace Society Conf., Tehran, Iran, March, 2011c.

  17. Rahmati, A. R. and Niazi, S., Numerical simulation of thermal micro flow using double density distributed function lattice Boltzmann method, Proc. 10th Iranian Aerospace Society Conf., Tehran, Iran, March, 2011d.

  18. Rahmati, A. R., Ashrafizaadeh, M., and Shirani, E., Convective flow simulation by using two hybrid finite-difference thermal lattice Boltzmann models, Book of Extended Abstracts of the 5th Int. Conf. for Mesoscopic Methods in Engineering and Science (ICMMES), Amsterdam, The Netherlands, June, 2008a.

  19. Rahmati, A. R., Ashrafizaadeh, M., and Shirani, E., Improvement of numerical instability of lattice Boltzmann methods using various techniques, Proc. 16th Annual Int. Conf. on Mechanical Engineering, Kerman, Iran, pp. 115–116, May, 2008b.

  20. Rahmati, A. R., Ashrafizaadeh, M., and Shirani, E., Incompressible multi-relaxation-time LBM with non-uniform mesh for LES of Rayleigh–Bénard convection flow, Proc. 12th Asian Congress of Fluid Mechanics, Daejeon, Korea, p. 54, August, 2008c.

  21. Rahmati, A. R., Ashrafizaadeh, M., and Shirani, E., Multi-relaxation-time lattice Boltzmann method for LES of turbulent flows, Proc. 11th Fluid Dynamics Conf., Tehran, Iran, p. 8, May, 2008d.

  22. Rahmati, A. R., Ashrafizaadeh, M., and Shirani, E. , Natural convection simulation by using two thermal lattice Boltzmann models, Proc. 16th Annual Int. Conf. on Mechanical Engineering, Kerman, Iran, pp. 109–110, May, 2008e.

  23. Rahmati, A. R., Ashrafizaadeh, M., and Shirani, E., Novel hybrid finite-difference thermal lattice Boltzmann models for convective flows, Heat Transfer Research, vol. 40, no. 8, pp. 747–775, 2009.

  24. Rahmati, A. R., Ashrafizaadeh, M., and Shirani, E., Numerical instability analysis of the lattice Boltzmann equations methods using different schemes, Proc. 12th Asian Congress of Fluid Mechanics, Daejeon, Korea, p. 33, August, 2008f.

  25. Rahmati, A. R., Ashrafizaadeh, M., and Shirani, E., Numerical simulation of viscous flows using an incompressible lattice Boltzmann method on non-uniform grids, Proc. 7th Iranian Aerospace Society Conf., Tehran, Iran, pp. 43-44, February, 2008g.

  26. Rahmati, A. R., Niazi, S., and Naderi Beni, M., An incompressible generalized lattice Boltzmann method for increasing heat transfer with nanofluids in a square cavity, Proc. 7th Int. Conf. on Computational Heat and Mass Transfer, Istanbul, Turkey Yeditepe Universitesi, July, 2011a.

  27. Rahmati, A. R., Niazi, S., and Naderi Beni, M., Gas flow simulation in micro tubes using a multi-relaxation-time lattice Boltzmann method, Proc. 7th Int. Conf. on Computational Heat and Mass Transfer, Istanbul, Turkey, Yeditepe Universitesi July, 2011b.

  28. Sergent, A., Joubert, P., and Le Quéré, P., Large eddy simulation of turbulent thermal convection using a mixed scale diffusivity model, Prog. Comput. Fluid Dynam., vol. 6, nos. 1–3, pp. 40–49, 2006.

  29. Teixeira, C., Chen, H., and Freed, D. M., Multispeed thermal lattice Boltzmann method stabilization via equilibrium underrelaxation, Comput. Phys. Comm., vol. 129, pp. 207–226, 2000.

  30. Tric, E., Labrosse, G., and Betrouni, M. , A first incursion into the 3D structure of natural convection of air in a differentially heated cubic cavity, from accurate numerical solutions, Int. J. Heat Mass Transfer, vol. 43, pp. 4043–4056, 2000.

  31. Yu, H., Girimaji, S., and Luo, L. S., LES of turbulent square jet flow using an MRT lattice Boltzmann model, Comput. Fluids, vol. 35, pp. 957–965, 2006.


Articles with similar content:

Large Eddy Simulation of Turbulent Natural Convection Flows in Cavities
International Heat Transfer Conference 12, Vol.8, 2002, issue
Patrick Le Quere, Anne Sergent, Patrice Joubert
CLOSURE STUDY OF THE REYNOLDS NUMBER DEPENDENCY OF THE SCALAR FLUX SPECTRUM
TSFP DIGITAL LIBRARY ONLINE, Vol.4, 2005, issue
Jean Pierre Bertoglio, H. Touil, Wouter J. T. Bos
SIMULATION OF CONTROL OF THERMAL CONVECTION USING EXTERNAL MAGNETIC FIELD WITH DIFFERENT ORIENTATION AND DISTRIBUTION
TSFP DIGITAL LIBRARY ONLINE, Vol.3, 2003, issue
Kemo Hanjalic, Sasa Kenjeres
POD based reconstruction of subgrid stresses for wall bounded flows using neural networks
ICHMT DIGITAL LIBRARY ONLINE, Vol.10, 2006, issue
Christian Wollblad, Lars Davidson
THE APPLICATION OF FLUX-CORRECTED TRANSPORT (FCT) TO HIGH RAYLEIGH NUMBER NATURAL CONVECTION IN A POROUS MEDIUM
International Heat Transfer Conference 8, Vol.5, 1986, issue
Melvin R. Baer, R. J. Gross, C. E. Hickox, Jr.