Inscrição na biblioteca: Guest
Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa
Heat Transfer Research
Fator do impacto: 0.404 FI de cinco anos: 0.8 SJR: 0.264 SNIP: 0.504 CiteScore™: 0.88

ISSN Imprimir: 1064-2285
ISSN On-line: 2162-6561

Volumes:
Volume 50, 2019 Volume 49, 2018 Volume 48, 2017 Volume 47, 2016 Volume 46, 2015 Volume 45, 2014 Volume 44, 2013 Volume 43, 2012 Volume 42, 2011 Volume 41, 2010 Volume 40, 2009 Volume 39, 2008 Volume 38, 2007 Volume 37, 2006 Volume 36, 2005 Volume 35, 2004 Volume 34, 2003 Volume 33, 2002 Volume 32, 2001 Volume 31, 2000 Volume 30, 1999 Volume 29, 1998 Volume 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.2012005763
pages 603-620

UNSTEADY MHD MIXED CONVECTION STAGNATION‐POINT FLOW IN A MICROPOLAR FLUID ON A VERTICAL SURFACE IN A POROUS MEDIUM WITH SORET AND DUFOUR EFFECTS

Aurang Zaib
Department of Mathematical Sciences, Federal Urdu University of Arts, Science and Technology, Gulshan-e-Iqbal Karachi-75300, Pakistan
Abdul Rahman M. Kasim
Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia JB, 81310 Skudai, Johor, Malaysia
N. F. Mohammad
Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia JB, 81310 Skudai, Johor, Malaysia
Sharidan Shafie
Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia 81310 UTM Johor Bahru, Johor, Malaysia

RESUMO

The problem of an unsteady MHD mixed convection flow with heat and mass transfer in a micropolar fluid near the forward stagnation point in a porous medium with Soret and Dufour effects has been investigated. The self-similarity transformation is used to transform the governing equations and then to solve them numerically using an implicit finite difference scheme. In this study, we consider both assisting and opposing flows. The profiles of velocity, microrotation, temperature, and concentration, as well as the skin friction, and the rate of heat and mass transfer are determined and presented graphically for physical parameters. The results show that the magnetic parameter decreases the reduced skin friction and reduced heat and mass transfer for the assisting flow while the opposite trend is observed for the case of opposing flow. It is also found that the buoyancy parameter decreases the thermal and concentration boundary layer thickness for an assisting flow and increases for an opposing one.


Articles with similar content:

MIXED CONVECTION ON A PERMEABLE STRETCHING CYLINDER WITH PRESCRIBED SURFACE HEAT FLUX IN POROUS MEDIUM WITH HEAT GENERATION OR ABSORPTION
Journal of Porous Media, Vol.16, 2013, issue 11
Abbas Abbassi, Sadegh Khalili, Arezoo Khalili, Sara Kafashian
Mixed Convection Boundary Layer Flow of a Micropolar Fluid Along a Vertical Cylinder
International Journal of Fluid Mechanics Research, Vol.33, 2006, issue 3
Harmindar S. Takhar, Ali J. Chamkha, Rama Subba Reddy Gorla
STEADY DOUBLE-DIFFUSIVE MIXED CONVECTION BOUNDARY LAYER FLOW PAST A VERTICAL FLAT PLATE EMBEDDED IN A POROUS MEDIUM FILLED BY A NANOFLUID USING BUONGIORNO'S MODEL
Journal of Porous Media, Vol.19, 2016, issue 4
Ioan Pop, Anuar Ishak, Mohd Hafizi Mat Yasin
Non-Newtonian Power Law Fluid Flow and Heat Transfer in a Porous Medium Over a Nonisothermal Stretching Sheet
International Journal of Fluid Mechanics Research, Vol.35, 2008, issue 5
K. V. Prasad, P. S. Datti
STAGNATION-POINT FLOW OVER A STRETCHING/SHRINKING CYLINDER IN A ALUMINA-WATER NANOFLUID
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 2015, issue
Noor Syamimi Omar, Norfifah Bachok, Anuar Ishak, Norihan Md. Arifin