Inscrição na biblioteca: Guest
Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa
Heat Transfer Research
Fator do impacto: 0.404 FI de cinco anos: 0.8 SJR: 0.264 SNIP: 0.504 CiteScore™: 0.88

ISSN Imprimir: 1064-2285
ISSN On-line: 2162-6561

Volumes:
Volume 50, 2019 Volume 49, 2018 Volume 48, 2017 Volume 47, 2016 Volume 46, 2015 Volume 45, 2014 Volume 44, 2013 Volume 43, 2012 Volume 42, 2011 Volume 41, 2010 Volume 40, 2009 Volume 39, 2008 Volume 38, 2007 Volume 37, 2006 Volume 36, 2005 Volume 35, 2004 Volume 34, 2003 Volume 33, 2002 Volume 32, 2001 Volume 31, 2000 Volume 30, 1999 Volume 29, 1998 Volume 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.v40.i5.80
pages 455-472

Experimental Research of Heat Transfer from an In-Line Tube Bundle to a Vertical Foam Flow

Jonas Gylys
Department of Thermal and Nuclear Energy, Kaunas University of Technology, K.Donelaièio str. 20, LT-44239 Kaunas, Lithuania
Tadas Zdankus
Energy Technology Institute, Kaunas University of Technology, K. Donelaicio 20-212 LK, LT-44239 Kaunas, Lithuania
Irena Gabrielaitiene
Energy Technology Institute, Kaunas University of Technology, Lithuania
Stasys Sinkunas
Department of Thermal and Nuclear Energy, Kaunas University of Technology, Donelaicio 20, LT-44239 Kaunas, Lithuania

RESUMO

Development of heat exchangers with low consumption of primary energy resources and the enhanced heat transfer rates is the aim of our investigation. There are some ways of heat exchangers development. Usage of advanced coolants with the most suitable characteristics is one of the best and promising ways. We estimated that usage of aqueous foam as a coolant results in a relatively large heat transfer rate due to a small mass flow rate of such coolant. The main task of this work was to experimentally investigate the intensity of heat transfer from an in-line tube bundle to vertical upward and downward (after a 180-deg turning) foam flows. The influence of the foam flow parameters, such as flow velocity, direction of flow, volumetric void fraction of foam, and liquid drainage from foam, on the in-line tube bundle heat transfer intensity was determined. The influence of the tube position in the bundle on heat transfer intensity was investigated as well. The results of our experimental investigation are presented and analyzed in this paper. The results of investigation could enable one to create a modern and economic heat exchanger with simple and safe operation using a two-phase foam flow. It must be a compact, light heat exchanger with a relatively large intensity of heat transfer.


Articles with similar content:

PROCESS INTENSIFICATION BY HEAT PIPE OF METHANE REFORMING FOR HYDROGEN PRODUCTION
International Heat Transfer Conference 16, Vol.20, 2018, issue
Feng Wang, Youyou Tian, Bohong Chen, Long Wang, Minghan He, Yu Ruan, Bo Qi
Pilot Test and Model Analysis of Plastic Heat Exchanger for Flue Gas Heat Recovery
International Heat Transfer Conference 15, Vol.13, 2014, issue
Xiaoze Du, Lin Chen, Lijun Yang, Gang Xu, Jiangtao Liang, Yingying Sun
Heat Transfer and Flow Friction Characteristics of Louvred Heat Exchanger Surfaces
ICHMT DIGITAL LIBRARY ONLINE, Vol.19, 1981, issue
C. J. Davenport
Recent Research and Developments in Plate Heat Exchangers
Journal of Enhanced Heat Transfer, Vol.2, 1995, issue 1-2
R. Vidil, Bernard Thonon, Ch. Marvillet
THE PRINCIPLE OF DISCRETE AND PULSE INPUT OF ENERGY - NEW APPROACH TO THE DEVELOPMENT OF EFFICIENT POWER-SAVING TECHNOLOGIES
Annual Review of Heat Transfer, Vol.13, 2003, issue 13
A. A. Dolinsky, G. K. Ivanitskii