Inscrição na biblioteca: Guest
Critical Reviews™ in Therapeutic Drug Carrier Systems

Publicou 6 edições por ano

ISSN Imprimir: 0743-4863

ISSN On-line: 2162-660X

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 2.7 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 3.6 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.8 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00023 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.39 SJR: 0.42 SNIP: 0.89 CiteScore™:: 5.5 H-Index: 79

Indexed in

Tuberculosis Resistance and Nanoparticles: Combating the Dual Role of Reactive Oxygen Species in Macrophages for Tuberculosis Management

Volume 37, Edição 2, 2020, pp. 161-182
DOI: 10.1615/CritRevTherDrugCarrierSyst.2020029870
Get accessGet access

RESUMO

Increasing drift in antimicrobial therapy failure against Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), and the advent of extended resistant strains strongly demand discovery of mechanisms underlying development of drug resistance. The emergence of resistance against anti-TB drugs has reached an alarming level in various parts of the world, providing an active platform for the design of new targeted drug delivery. Reactive oxygen species (ROS) have an important role in controlling TB pathogenesis. At macrophage activation, ROS that are produced inside macrophages directly kill resident bacteria. These ROS possess a dual character because they can kill macrophages along with the resident bacteria. Targeting these ROS can play a remarkable part in overcoming resistance of conventional drugs. Nanoparticles (NPs) have evolved as a potential drug carrier for targeted delivery and elimination of various resistance mechanisms against antimicrobials. Receptor-mediated targeting of macrophages via different NPs may be a promising strategy for combating drug resistance and enhancing efficacy of old-fashioned antimycobacterial agents.

Referências
  1. Meena LS, Rajni. Survival mechanisms of pathogenic Mycobacterium tuberculosis H37Rv. FEBS J. 2010;277(11):2416-27.

  2. Hossain MM, Norazmi MN. Pattern recognition receptors and cytokines in Mycobacterium tuberculosis infection-the double-edged sword? Biomed Res Int. 2013;2013:179174.

  3. Flynn J, Chan J, Lin P. Macrophages and control of granulomatous inflammation in tuberculosis. Mucosal Immunol. 2011;4(3):271-8.

  4. Smith T, Wolff KA, Nguyen L. Molecular biology of drug resistance in Mycobacterium tuberculosis. In: Pieters J, McKinney JD, editors. Pathogenesis of Mycobacterium tuberculosis and its interaction with the host organism. Berlin, Germany: Springer Verlag; 2013. p. 53-80.

  5. Trivedi A, Singh N, Bhat SA, Gupta P, Kumar A. Redox biology of tuberculosis pathogenesis. In: Poole RK, editor. Advances in microbial physiology. vol. 60. Cambridge, MA: Academic Press; 2012. p. 263-324.

  6. Manjelievskaia J, Erck D, Piracha S, Schrager L. Drug-resistant TB: Deadly, costly and in need of a vaccine. Trans R Soc Trop Med Hyg. 2016;110(3):186-91.

  7. Gupta A, Pandya SM, Mohammad I, Agrawal AK, Mohan M, Misra A. Particulate pulmonary delivery systems containing anti-tuberculosis agents. Crit Rev Ther Drug Carrier Syst. 2013;30(4):277-91.

  8. van Heijst JW, Pamer EG. Radical host-specific therapies for TB. Cell. 2013;153(3):507-8.

  9. Flynn JL, Chan J. Immunology of tuberculosis. Ann Rev Immunol. 2001;19(1):93-129.

  10. Bafica A, Feng CG, Santiago HC, Aliberti J, Cheever A, Thomas KE, Taylor GA, Vogel SN, Sher A. The IFN-inducible GTPase LRG47 (Irgm1) negatively regulates TLR4-triggered proinflammatory cytokine production and prevents endotoxemia. J Immunol. 2007;179(8):5514-22.

  11. Wang R, Zhang Z, Xie L, Xie J. Implications of Mycobacterium major facilitator superfamily for novel measures against tuberculosis. Crit Rev Eukaryot Gene Expr. 2015;25(4):315-21.

  12. Sweet L, Singh PP, Azad AK, Rajaram MV, Schlesinger LS, Schorey JS. Mannose receptor-dependent delay in phagosome maturation by Mycobacterium avium glycopeptidolipids. Infect Immun. 2010;78(1):518-26.

  13. Ishikawa E, Mori D, Yamasaki S. Recognition of mycobacterial lipids by immune receptors. Trends Immunol. 2017;38(1):66-76.

  14. Chan J, Xing Y, Magliozzo RS, Bloom BR. Killing of virulent Mycobacterium tuberculosis by reactive nitrogen intermediates produced by activated murine macrophages. J Exp Med. 1992;175(4):1111-22.

  15. Mills EL, O'Neill LA. Reprogramming mitochondrial metabolism in macrophages as an anti-inflammatory signal. Eur J Immunol. 2016;46(1):13-21.

  16. Kelly B, O'Neill LA. Metabolic reprogramming in macrophages and dendritic cells in innate immunity. Cell Res. 2015;25(7):771.

  17. Woodworth JSM, Behar SM. Mycobacterium tuberculosis specific CD8+ T cells and their role in immunity. Crit Rev Immunol. 2006;26(4):317-52.

  18. Gonzalez-Juarrero M, Turner OC, Turner J, Marietta P, Brooks JV, Orme IM. Temporal and spatial arrangement of lymphocytes within lung granulomas induced by aerosol infection with Mycobacterium tuberculosis. Infect Immun. 2001;69(3):1722-8.

  19. Palanisamy GS, Kirk NM, Ackart DF, Shanley CA, Orme IM, Basaraba RJ. Evidence for oxidative stress and defective antioxidant response in guinea pigs with tuberculosis. PLoS One. 2011;6(10):e26254.

  20. Bedard K, Krause K-H. The NOX family of ROS-generating NADPH oxidases: Physiology and pathophysiology. Physiol Rev. 2007;87(1):245-313.

  21. Lerner TR, Borel S, Gutierrez MG. The innate immune response in human tuberculosis. Cell Microbiol. 2015;17(9):1277-85.

  22. Zhang Y, Garbe T, Young D. Transformation with katG restores isoniazid-sensitivity in Mycobacterium tuberculosis isolates resistant to a range of drug concentrations. Mol Microbiol. 1993;8(3):521-4.

  23. Noronha-Dutra AA, Epperlein MM, Woolf N. Reaction of nitric oxide with hydrogen peroxide to produce potentially cytotoxic singlet oxygen as a model for nitric oxide-mediated killing. FEBS Lett. 1993;321(1):59.

  24. Piddington DL, Fang FC, Laessig T, Cooper AM, Orme IM, Buchmeier NA. Cu, Zn superoxide dismutase of Mycobacterium tuberculosis contributes to survival in activated macrophages that are generating an oxidative burst. Infect Immun. 2001;69(8):4980-7.

  25. Buchmeier NA, Newton GL, Fahey RC. A mycothiol synthase mutant of Mycobacterium tuberculosis has an altered thiol-disulfide content and limited tolerance to stress. J Bacteriol. 2006;188(17): 6245-52.

  26. Shi S, Ehrt S. Dihydrolipoamide acyltransferase is critical for Mycobacterium tuberculosis pathogenesis. Infect Immun. 2006;74(1):56-63.

  27. Koch A, Mizrahi V, Warner DF. The impact of drug resistance on Mycobacterium tuberculosis physiology: What can we learn from rifampicin? Emerg Microbes Infect. 2014;3(3):e17.

  28. Jamieson F, Guthrie J, Neemuchwala A, Lastovetska O, Melano R, Mehaffy C. Profiling of rpoB mutations and MICs for rifampin and rifabutin in Mycobacterium tuberculosis. J Clin Microbiol. 2014;52(6):2157-62.

  29. Darwin KH, Ehrt S, Gutierrez-Ramos J-C, Weich N, Nathan CF. The proteasome of Mycobacterium tuberculosis is required for resistance to nitric oxide. Science. 2003;302(5652):1963-6.

  30. Colangeli R, Helb D, Vilcheze C, Hazbon MH, Lee CG, Safi H, Sayers B, Sardone I, Jones MB, Fleischmann RD. Transcriptional regulation of multi-drug tolerance and antibiotic-induced responses by the histone-like protein Lsr2 in M. tuberculosis. PLoS Pathog. 2007;3(6):e87.

  31. Vergne I, Bah A. Autophagy and autophagy-related proteins in the immunity against Mycobacterium tuberculosis. Forum Immunopathol Dis Therap. 2016;6(3):217-26.

  32. Tyagi P, Dharmaraja AT, Bhaskar A, Chakrapani H, Singh A. Mycobacterium tuberculosis has diminished capacity to counteract redox stress induced by elevated levels of endogenous superoxide. Free Rad Biol Med. 2015;84:344-54.

  33. Szulc-Kielbik I, Kielbik M, Klink M. The role of homologous recombination and non-homologous ends joining systems in M. tuberculosis survival inside macrophages. Forum Immunopathol Dis Therap; 2015;6(3):237-49.

  34. Roca FJ, Ramakrishnan L. TNF Dually mediates resistance and susceptibility to mycobacteria via mitochondrial reactive oxygen species. Cell. 2013;153(3):521-34.

  35. Ramakrishnan L. Revisiting the role of the granuloma in tuberculosis. Nat Rev Immunol. 2012;12(5):352-66.

  36. Cho Y, Challa S, Moquin D, Genga R, Ray TD, Guildford M, Chan FK-M. Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell. 2009;137(6):1112-23.

  37. Sun L, Wang H, Wang Z, He S, Chen S, Liao D, Wang L, Yan J, Liu W, Lei X. Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell. 2012;148(1):213-27.

  38. Baines CP, Kaiser RA, Purcell NH, Blair NS, Osinska H, Hambleton MA, Brunskill EW, Sayen MR, Gottlieb RA, Dorn GW. Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature. 2005;434(7033):658-62.

  39. Vandenabeele P, Galluzzi L, Berghe TV, Kroemer G. Molecular mechanisms of necroptosis: An ordered cellular explosion. Nat Rev Mol Cell Biol. 2010;11(10):700-14.

  40. Ehrt S, Schnappinger D. Mycobacterial survival strategies in the phagosome: Defense against host stresses. Cell Microbiol. 2009;11(8):1170-8.

  41. Brennan PJ. Structure, function, and biogenesis of the cell wall of Mycobacterium tuberculosis. Tuberculosis. 2003;83(1):91-7.

  42. Barry CE, Crick DC, McNeil MR. Targeting the formation of the cell wall core of M. tuberculosis. Infect Disord Drug Targets. 2007;7(2):182-202.

  43. Liu H, Xie J. Comparative genomics of Mycobacterium tuberculosis drug efflux pumps and their transcriptional regulators. Crit Rev Eukaryot Gene Expr. 2014;24(2):163-80.

  44. Somoskovi A, Parsons LM, Salfinger M. The molecular basis of resistance to isoniazid, rifampin, and pyrazinamide in Mycobacterium tuberculosis. Respir Res. 2001;2(3):164-8.

  45. Caws M, Duy PM, Tho DQ, Lan NTN, Farrar J. Mutations prevalent among rifampin- and isoni-azid-resistant Mycobacterium tuberculosis isolates from a hospital in Vietnam. J Clin Microbiol. 2006;44(7):2333-7.

  46. Argyrou A, Vetting MW, Aladegbami B, Blanchard JS. Mycobacterium tuberculosis dihydrofolate reductase is a target for isoniazid. Nat Struct Mol Biol. 2006;13(5):408-13.

  47. Safi H, Lingaraju S, Amin A, Kim S, Jones M, Holmes M, McNeil M, Peterson SN, Chatterjee D, Fleischmann R. Evolution of high-level ethambutol-resistant tuberculosis through interacting mutations in decaprenylphosphoryl-P-D-arabinose biosynthetic and utilization pathway genes. Nat Genet. 2013;45(10):1190-7.

  48. Zhang Y, Mitchison D. The curious characteristics of pyrazinamide: A review. Int J Tuberc Lung Dis. 2003;7(1):6-21.

  49. Shi W, Zhang X, Jiang X, Yuan H, Lee JS, Barry CE, Wang H, Zhang W, Zhang Y. Pyrazinamide inhibits trans-translation in Mycobacterium tuberculosis. Science. 2011;333(6049):1630-2.

  50. Jureen P, Werngren J, Toro J-C, Hoffner S. Pyrazinamide resistance and pncA gene mutations in Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2008;52(5):1852-4.

  51. Billington OJ. Evolution of drug resistance in Mycobacterium tuberculosis [dissertation]. University of London; 2005.

  52. Okamoto S, Tamaru A, Nakajima C, Nishimura K, Tanaka Y, Tokuyama S, Suzuki Y, Ochi K. Loss of a conserved 7-methylguanosine modification in 16S rRNA confers low-level streptomycin resistance in bacteria. Mol Microbiol. 2007;63(4):1096-106.

  53. Spies FS, Da Silva PEA, Ribeiro MO, Rossetti ML, Zaha A. Identification of mutations related to streptomycin resistance in clinical isolates of Mycobacterium tuberculosis and possible involvement of efflux mechanism. Antimicrob Agents Chemother. 2008;52(8):2947-9.

  54. Trias J, Jarlier V, Benz R. Porins in the cell wall of mycobacteria. Science. 1992;258(5087):1479-81.

  55. Poole K. Efflux pumps as antimicrobial resistance mechanisms. Ann Med. 2007;39(3):162-76.

  56. Joo HS, Fu CI, Otto M. Bacterial strategies of resistance to antimicrobial peptides. Philos Trans R Soc Lond B Biol Sci. 2016;371(1695):20150292.

  57. Duncan K, Barry CE. Prospects for new antitubercular drugs. Curr Opin Microbiol. 2004;7(5):460-5.

  58. Zhang Y, Yew WW. Mechanisms of drug resistance in Mycobacterium tuberculosis: Update 2015. Int J Tuberc Lung Dis. 2015;19(11):1276-89.

  59. van den Boogaard J, Kibiki GS, Kisanga ER, Boeree MJ, Aarnoutse RE. New drugs against tuberculosis: Problems, progress, and evaluation of agents in clinical development. Antimicrob Agents Chemother. 2009;53(3):849-62.

  60. Kaur M, Garg T, Rath G, Goyal AK. Current nanotechnological strategies for effective delivery of bioactive drug molecules in the treatment of tuberculosis. Crit Rev Ther Drug Carrier Syst. 2014;31(1):49-88.

  61. Gygli SM, Borrell S, Trauner A, Gagneux S. Antimicrobial resistance in Mycobacterium tuberculosis: Mechanistic and evolutionary perspectives. FEMS Microbiol Rev. 2017;41(3):354-73.

  62. Karthikeyan R, Koushnik OS. Dendrimeric biocides: A tool for effective antimicrobial therapy. J Nanomed Nanotechnol. 2016;7(7):359.

  63. Kisich KO, Gelperina S, Higgins MP, Wilson S, Shipulo E, Oganesyan E, Heifets L. Encapsulation of moxifloxacin within poly(butyl cyanoacrylate) nanoparticles enhances efficacy against intracellular Mycobacterium tuberculosis. Int J Pharm. 2007;345(1-2):154-62.

  64. Jose C, Amra K, Bhavsar C, Momin M, Omri A. Polymeric lipid hybrid nanoparticles: Properties and therapeutic applications. Crit Rev Ther Drug Carrier Syst. 2018;35(6):555-88.

  65. Christie C, Madsen SJ, Peng Q, Hirschberg H. Photothermal therapy employing gold nanoparticle-loaded macrophages as delivery vehicles: Comparing the efficiency of nanoshells versus nanorods. J Environ Pathol Toxicol Oncol. 2017;36(3):221-35.

  66. Gupta S, Kumar P, Gupta MK, Vyas SP. Colloidal carriers: A rising tool for therapy of tuberculosis. Crit Rev Ther Drug Carrier Syst. 2012;29(4):299-53.

  67. Hamidi M, Foroozesh M, Zarrin A. Lipoproteins: From physiological roles to drug delivery potentials. Crit Rev Ther Drug Carrier Syst. 2006;23(6):497-523.

  68. Sarwar HS, Akhtar S, Sohail MF, Naveed Z, Rafay M, Nadhman A, Yasinzai M, Shahnaz G. Redox biology of Leishmania and macrophage targeted nanoparticles for therapy. Nanomedicine. 2017;12(14):1713-25.

  69. Sarwar HS, Ashraf S, Akhtar S, Sohail MF, Hussain SZ, Rafay M, Yasinzai M, Hussain I, Shahnaz G. Mannosylated thiolated polyethylenimine nanoparticles for the enhanced efficacy of antimonial drug against leishmaniasis. Nanomedicine. 2018;13(1):25-41.

  70. Puri A, Loomis K, Smith B, Lee JH, Yavlovich A, Heldman E, Blumenthal R. Lipid-based nanoparticles as pharmaceutical drug carriers: From concepts to clinic. Crit Rev Ther Drug Carrier Syst. 2009;26(6):523-80.

  71. Jacobs C, Muller RH. Production and characterization of a budesonide nanosuspension for pulmonary administration. Pharm Res. 2002;19(2):189-94.

  72. Patil TS, Deshpande A, Shende PK, Deshpande S, Gaud R. Evaluation of nanocarrier-based dry power formulations for inhalation with special reference to anti-tuberculosis drugs. Crit Rev Ther Drug Carrier Syst. 2019;36(3):239-76.

  73. Pandey R, Khuller G. Antitubercular inhaled therapy: Opportunities, progress and challenges. J Antimicrob Chem. 2005;55(4):430-5.

  74. Anisimova Y, Gelperina S, Peloquin C, Heifets L. Nanoparticles as antituberculosis drugs carriers: Effect on activity against Mycobacterium tuberculosis in human monocyte-derived macrophages. J Nanopart Res. 2000;2(2):165-71.

  75. Chavez-Santoscoy AV, Roychoudhury R, Pohl NL, Wannemuehler MJ, Narasimhan B, Ramer-Tait AE. Tailoring the immune response by targeting C-type lectin receptors on alveolar macrophages using "pathogen-like" amphiphilic polyanhydride nanoparticles. Biomaterials. 2012;33(18):4762-72.

  76. Tiwari S. Mannosylated constructs as a platform for cell-specific delivery of bioactive agents. Crit Rev Ther Drug Carrier Syst. 2018;35(2):157-94.

  77. Sohail MF, Hussain SZ, Saeed H, Javed I, Sarwar HS, Nadhman A, Rehman M, Jahan S, Hussain I, Shahnaz G. Polymeric nanocapsules embedded with ultra-small silver nanoclusters for synergistic pharmacology and improved oral delivery of docetaxel. Sci Rep. 2018;8(1):13304.

  78. Ovais M, Nadhman A, Khalil AT, Raza A, Khuda F, Sohail MF, Islam NU, Sarwar HS, Shahnaz G, Ahmad I. Biosynthesized colloidal silver and gold nanoparticles as emerging leishmanicidal agents: An insight. Nanomedicine. 2017;12(24):2807-19.

  79. Gupta R, Xie H. Nanoparticles in daily life: Applications, toxicity and regulations. J Environ Pathol Toxicol Oncol. 2018;37(3):209-30.

  80. Masoud R, Bizouarn T, Trepout S, Wien F, Baciou L, Marco S, Levin CH. Titanium dioxide nanoparticles increase superoxide anion production by acting on NADPH oxidase. PLoS One. 2015;10(12):e0144829.

  81. Nadhman A, Nazir S, Khan MI, Arooj S, Bakhtiar M, Shahnaz G, Yasinzai M. PEGylated silver doped zinc oxide nanoparticles as novel photosensitizers for photodynamic therapy against Leishmania. Free Radical Biol Med. 2014;77:230-8.

  82. Rinna A, Magdolenova Z, Hudecova A, Kruszewski M, Refsnes M, Dusinska M. Effect of silver nanoparticles on mitogen-activated protein kinases activation: Role of reactive oxygen species and implication in DNA damage. Mutagenesis. 2015;30(1):59-66.

  83. Villanueva YY, Liu D-R, Cheng PT. Pulsed laser deposition of zinc oxide. Thin Solid Films. 2006;501(1):366-9.

  84. Das S, Dowding JM, Klump KE, McGinnis JF, Self W, Seal S. Cerium oxide nanoparticles: Applications and prospects in nanomedicine. Nanomedicine. 2013;8(9):1483-508.

  85. Praba VL, Kathirvel M, Vallayyachari K, Surendar K, Muthuraj M, Jesuraj PJ, Govindarajan S, Raman KV. Bactericidal effect of silver nanoparticles against Mycobacterium tuberculosis. J Bionanosci. 2013;7(3):282-7.

  86. Choi SR, Britigan BE, Moran DM, Narayanasamy P. Gallium nanoparticles facilitate phagosome maturation and inhibit growth of virulent Mycobacterium tuberculosis in macrophages. PLoS One. 2017;12(5):e0177987.

  87. Hassan S, Prakash G, Ozturk AB, Saghazadeh S, Sohail MF, Seo J, Dokmeci MR, Zhang YS, Khademhosseini A. Evolution and clinical translation of drug delivery nanomaterials. Nano Today. 2017;15:91-106.

  88. Ghafar H, Khan MI, Sarwar HS, Yaqoob S, Hussain SZ, Tariq I, Madni AU, Shahnaz G, Sohail MF. Development and characterization of bioadhesive film embedded with lignocaine and calcium fluoride nanoparticles. AAPS PharmSciTech. 2020;21(2):1-12.

  89. Bauer G. Nitric oxide's contribution to selective apoptosis induction in malignant cells through multiple reaction steps. Crit Rev Oncog. 2016;21(5-6):365-98.

  90. Dube A, Reynolds JL, Law W-C, Maponga CC, Prasad PN, Morse GD. Multimodal nanoparticles that provide immunomodulation and intracellular drug delivery for infectious diseases. Nanomed Nanotechnol Biol Med. 2014;10(4):831-8.

  91. Lee HM, Shin DM, Song HM, Yuk JM, Lee ZW, Lee SH, Hwang SM, Kim JM, Lee CS, Jo EK. Nanoparticles up-regulate tumor necrosis factor-a and CXCL8 via reactive oxygen species and mitogen-activated protein kinase activation. Toxicol Appl Pharmacol. 2009;238(2):160-9.

  92. Szabo T, Nemeth J, Dekany I. Zinc oxide nanoparticles incorporated in ultrathin layer silicate films and their photocatalytic properties. Colloids Surf A Physicochem Eng Aspects. 2003;230(1):23-35.

  93. Pandey R, Zahoor A, Sharma S, Khuller GK. Nanoparticle encapsulated antitubercular drugs as a potential oral drug delivery system against murine tuberculosis. Tuberculosis (Edinb). 2003;83(6):373-8.

  94. Pandey R, Khuller GK. Subcutaneous nanoparticle-based antitubercular chemotherapy in an experimental model. J Antimicrob Chem. 2004 Jul;54(1):266-8.

  95. Sharma A, Sharma S, Khuller GK. Lectin-functionalized poly(lactide-co-glycolide) nanoparticles as oral/aerosolized antitubercular drug carriers for treatment of tuberculosis. J Antimicrob Chem. 2004;54(4):761-6.

  96. Kisich KO, Gelperina S, Higgins MP, Wilson S, Shipulo E, Oganesyan E, Heifets L. Encapsulation of moxifloxacin within poly(butyl cyanoacrylate) nanoparticles enhances efficacy against intracellular Mycobacterium tuberculosis. Int J Pharm. 2007;345(1):15-62.

  97. Clemens DL, Lee BY, Xue M, Thomas CR, Meng H, Ferris D, Nel AE, Zink JI, Horwitz MA. Targeted intracellular delivery of antituberculosis drugs to Mycobacterium tuberculosis-infected macrophages via functionalized mesoporous silica nanoparticles. Antimicrob Agents Chemother. 2012;56(5):2535-45.

  98. Saraogi GK, Sharma B, Joshi B, Gupta P, Gupta UD, Jain NK, Agrawal GP. Mannosylated gelatin nanoparticles bearing isoniazid for effective management of tuberculosis. J Drug Target. 2011;19(3):219-27.

  99. Fenaroli F, Westmoreland D, Benjaminsen J, Kolstad T, Skjeldal FM, Meijer AH, van der Vaart M, Ulanova L, Roos N, Nystrom B, Hildahl J, Griffiths G. Nanoparticles as drug delivery system against tuberculosis in zebrafish embryos: Direct visualization and treatment. ACS Nano. 2014;8(7):7014-26.

  100. Kumar PV, Asthana A, Dutta T, Jain NK. Intracellular macrophage uptake of rifampicin loaded man-nosylated dendrimers. J Drug Target. 2006 Sep;14(8):546-56.

  101. Cui Z, Mumper RJ. Microparticles and nanoparticles as delivery systems for DNA vaccines. Crit Rev Ther Drug Carrier Syst. 2003;20(2-3):103-37.

  102. de Faria TJ, Roman M, de Souza NM, De Vecchi R, de Assis JV, dos Santos AL, Bechtold IH, Winter N, Soares MJ, Silva LP, De Almeida MV, Bafica A. An isoniazid analogue promotes Mycobacterium tuberculosis nanoparticle interactions and enhances bacterial killing by macrophages. Antimicrob Agents Chemother. 2012 May;56(5):2259-67.

  103. Sharma A, Vaghasiya K, Gupta P, Gupta UD, Verma RK. Reclaiming hijacked phagosomes: Hybrid nano-in-micro encapsulated MIAP peptide ensures host directed therapy by specifically augmenting phagosome-maturation and apoptosis in TB infected macrophage cells. Int J Pharm. 2018 Jan 30;536(1):50-62.

  104. Moretton MA, Chiappetta DA, Andrade F, das Neves J, Ferreira D, Sarmento B, Sosnik A. Hydrolyzed galactomannan-modified nanoparticles and flower-like polymeric micelles for the active targeting of rifampicin to macrophages. J Biomed Nanotechnol. 2013 Jun;9(6):1076-87.

  105. Horvati K, Bacsa B, Kiss E, Gyulai G, Fodor K, Balka G, Rusvai M, Szabo E, Hudecz F, Bosze S. Nanoparticle encapsulated lipopeptide conjugate of antitubercular drug isoniazid: In vitro intracellular activity and in vivo efficacy in a guinea pig model of tuberculosis. Bioconj Chem. 2014 Dec 17;25(12):2260-8.

  106. Lemmer Y, Kalombo L, Pietersen RD, Jones AT, Semete-Makokotlela B, Van Wyngaardt S, Ramalapa B, Stoltz AC, Baker B, Verschoor JA, Swai HS, de Chastellier C. Mycolic acids, a promising mycobacterial ligand for targeting of nanoencapsulated drugs in tuberculosis. J Control Release. 2015;211:94-104.

  107. Edagwa BJ, Guo D, Puligujja P, Chen H, McMillan J, Liu X, Gendelman HE, Narayanasamy P. Long-acting antituberculous therapeutic nanoparticles target macrophage endosomes. FASEB J. 2014;28(12):5071-82.

  108. Liu Y, Qin R, Zaat SA, Breukink E, Heger M. Antibacterial photodynamic therapy: Overview of a promising approach to fight antibiotic-resistant bacterial infections. J Clin Transl Res. 2015;1(3): 140-67.

  109. Jori G. Photodynamic therapy of microbial infections: State of the art and perspectives. J Environ Pathol Toxicol Oncol. 2006;25(1-2):505-19.

  110. Garg T, Jain NK, Rath G, Goyal AK. Nanotechnology-based photodynamic therapy: Concepts, advances, and perspectives. Crit Rev Ther Drug Carrier Syst. 2015;32(5):389-439.

  111. Feese E, Ghiladi RA. Highly efficient in vitro photodynamic inactivation of Mycobacterium smegmatis. J Antimicrob Chem. 2009;64(4):782-5.

  112. Feese E. Development of novel photosensitizers for photodynamic inactivation of bacteria. 2011.

  113. Shim I, Choi M, Min Y, Seok KH, Kim JK, Jeong J-Y, Oak C-H, Park I. Effect of methylene blue-mediated photodynamic therapy on wild-type and ciprofloxacin-resistant mycobacterium smegmatis. J Bacteriol Virol. 2016;46(1):27-35.

  114. Sung N, Back S, Jung J, Kim KH, Kim JK, Lee JH, Ra Y, Yang HC, Lim C, Cho S, Kim K, Jheon S. Inactivation of multidrug resistant (MDR)- and extensively drug resistant (XDR)-Mycobacterium tuberculosis by photodynamic therapy. Photodiagnosis Photodyn Ther. 2013;10(4):694-702.

  115. Yew WW, Chan DP, Chang KC, Zhang Y. Does oxidative stress contribute to antituberculosis drug resistance? J Thorac Dis. 2019;11(7):E100.

  116. Verma I, Jindal SK, Ganguly NK. Oxidative stress in tuberculosis. Studies on respiratory disorders. Berlin, Germany: Springer; 2014. p. 101-14.

CITADO POR
  1. Kolesova Ekaterina, Bulgakova Anastasia, Maslov Vladimir, Veniaminov Andrei, Dubavik Aliaksei, Gun’ko Yurii, Efremenkova Olga, Oleinikov Vladimir, Orlova Anna, Bactericidal Activity of Multilayered Hybrid Structures Comprising Titania Nanoparticles and CdSe Quantum Dots under Visible Light, Nanomaterials, 11, 12, 2021. Crossref

  2. Suvarna Vasanti, Sawant Niserga, Desai Namita, A Review on Recent Advances in Mannose-Functionalized Targeted Nanocarrier Delivery Systems in Cancer and Infective Therapeutics, Critical Reviews™ in Therapeutic Drug Carrier Systems, 40, 2, 2023. Crossref

Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa Políticas de preços e assinaturas Begell House Contato Language English 中文 Русский Português German French Spain