Inscrição na biblioteca: Guest
Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa
Journal of Long-Term Effects of Medical Implants
SJR: 0.145 SNIP: 0.491 CiteScore™: 0.89

ISSN Imprimir: 1050-6934
ISSN On-line: 1940-4379

Journal of Long-Term Effects of Medical Implants

DOI: 10.1615/JLongTermEffMedImplants.2015011695
pages 147-160

Marrow Stem Cell Differentiation for Valvulogenesis via Oscillatory Flow and Nicotine Agonists: Unusual Suspects?

Smita Bhatacharjee
Tissue Engineered Mechanics, Imaging and Materials Laboratory (TEMIM Lab), Department of Biomedical Engineering, Florida International University, Miami, Florida
Sasmita Rath
Manuel Salinas
Tissue Engineered Mechanics, Imaging and Materials Laboratory (TEMIM Lab), Department of Biomedical Engineering, Florida International University, Miami, Florida
Sharan Ramaswamy
Department of Biomedical Engineering, Florida International University Miami, Florida, USA

RESUMO

Fluid-induced oscillatory shear stress (OSS) and nicotine are known antagonists in cardiovascular disease. However, from a regenerative medicine standpoint, we hypothesized that these parameters may support the cell differentiation of bone marrow mesenchymal stem cells (BMMSCs) for engineering heart valves. In this study, OSS and nicotine (10-6M) were applied individually to BMMSCs in monolayer culture. In both cases, a significantly higher expression of CD31 was detected compared to corresponding controls (p<0.05). We interpret our findings to indicate that both OSS and nicotine independently support mesenchymal to endothelial transformation; however, the underlying mechanism for this transformation in terms of the cell cytoskeletal structure was entirely different between the two stimulants. In the case of OSS, F-actin filaments exhibited a stretching response and formed a preferential alignment with each other. However, in the nicotine-treated group, a clear increase was observed in the number of actin filaments present, which led to the maximum expression of CD31 in comparison to the OSS and control groups. From our findings, we speculate that while nicotine may stimulate an increase in the differentiation of BMMSCs to endothelial cells, OSS may play a greater role in cellular distribution and the eventual creation of a tissue engineered heart valve (TEHV) endothelium.


Articles with similar content:

KLF4 in Ovarian Cancer
Forum on Immunopathological Diseases and Therapeutics, Vol.7, 2016, issue 1-2
Lawrence M. Pfeffer, Baojin Wang, Ziyun Du, Junming Yue
The Molecular Mechanism of EPO Regulates the Angiogenesis after Cerebral Ischemia through AMPK-KLF2 Signaling Pathway
Critical Reviews™ in Eukaryotic Gene Expression, Vol.29, 2019, issue 2
Yan-Qing Deng, Wen-Xin Jiang, Xiao-Li Li, Zu-Neng Lu, Shou-Qin Shangguan, Guang-Hui Chen, Wen-Qin Zou, Fa-Ming Zhou
Bi-Directional Signaling: Extracellular Matrix and Integrin Regulation of Breast Tumor Progression
Critical Reviews™ in Eukaryotic Gene Expression, Vol.23, 2013, issue 2
Suzanne M. Ponik, Scott Gehler, Patricia J. Keely, Kristin M Riching
Black Tea Polyphenol (Theaflavin) Downregulates MMP-2 in Human Melanoma Cell Line A375 by Involving Multiple Regulatory Molecules
Journal of Environmental Pathology, Toxicology and Oncology, Vol.29, 2010, issue 1
Hrishikesh Sil, Triparna Sen, Amitava Chatterjee, Shuvojit Moulik
Molecular Parameters of Head and Neck Cancer Metastasis
Critical Reviews™ in Eukaryotic Gene Expression, Vol.21, 2011, issue 2
Sanjay L. Bhave, Theodoras N. Teknos, Quintin Pan